采用常规粉末冶金和增材制造方法生产氧化物弥散强化铬镍铁合金

Eda AYDOĞAN GÜNGÖR
{"title":"采用常规粉末冶金和增材制造方法生产氧化物弥散强化铬镍铁合金","authors":"Eda AYDOĞAN GÜNGÖR","doi":"10.36306/konjes.1254946","DOIUrl":null,"url":null,"abstract":"Oxide dispersion strengthened (ODS) Ni-based alloys having a high density of nano-oxides (NOs) (<10 nm) are considered to be good candidates for extreme environments, such as high temperature, radiation, and corrosion. In this study, ODS IN718 alloys have been produced using conventional powder metallurgy (PM) and novel selective laser melting (SLM) additive manufacturing. The effect of processing routes on the microstructure, in particular on the nano-oxide formation and structure has been investigated. It has been found that the powder metallurgy method that consists of compressing followed by sintering at 1250 and 1500 °C results in a nano-granular structure with homogenously distributed fine nano-oxides having a high number density. Similarly, SLM results in a high number density of fine nano-oxides; however, the particles exist in groups with the grains/cells. The nano-oxides are determined to be Y2Ti2O7, Y2TiO5 or YTiO3 and Y-Al-O. The deviation in the lattice parameters of Y2Ti2O7 infers the existence of some Al in the structure. This study sheds light on producing ODS IN718 alloys with high-density nano-oxides using powder metallurgy and additive manufacturing methods.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRODUCTION OF OXIDE DISPERSION STRENGTHENED INCONEL 718 ALLOYS USING CONVENTIONAL POWDER METALLURGY AND ADDITIVE MANUFACTURING METHODS\",\"authors\":\"Eda AYDOĞAN GÜNGÖR\",\"doi\":\"10.36306/konjes.1254946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxide dispersion strengthened (ODS) Ni-based alloys having a high density of nano-oxides (NOs) (<10 nm) are considered to be good candidates for extreme environments, such as high temperature, radiation, and corrosion. In this study, ODS IN718 alloys have been produced using conventional powder metallurgy (PM) and novel selective laser melting (SLM) additive manufacturing. The effect of processing routes on the microstructure, in particular on the nano-oxide formation and structure has been investigated. It has been found that the powder metallurgy method that consists of compressing followed by sintering at 1250 and 1500 °C results in a nano-granular structure with homogenously distributed fine nano-oxides having a high number density. Similarly, SLM results in a high number density of fine nano-oxides; however, the particles exist in groups with the grains/cells. The nano-oxides are determined to be Y2Ti2O7, Y2TiO5 or YTiO3 and Y-Al-O. The deviation in the lattice parameters of Y2Ti2O7 infers the existence of some Al in the structure. This study sheds light on producing ODS IN718 alloys with high-density nano-oxides using powder metallurgy and additive manufacturing methods.\",\"PeriodicalId\":17899,\"journal\":{\"name\":\"Konya Journal of Engineering Sciences\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Konya Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36306/konjes.1254946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1254946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧化物分散强化(ODS)镍基合金具有高密度的纳米氧化物(NOs) (<10 nm),被认为是高温、辐射和腐蚀等极端环境的良好候选者。本研究采用传统粉末冶金(PM)和新型选择性激光熔化(SLM)增材制造技术制备了ODS IN718合金。研究了加工路线对微观结构的影响,特别是对纳米氧化物的形成和结构的影响。在1250℃和1500℃下进行压缩和烧结的粉末冶金方法可以得到具有高数目密度、分布均匀的细纳米氧化物的纳米颗粒结构。同样地,SLM产生高数量密度的精细纳米氧化物;然而,颗粒与颗粒/细胞成群存在。纳米氧化物分别为Y2Ti2O7、Y2TiO5或YTiO3和Y-Al-O。Y2Ti2O7晶格参数的偏差表明结构中存在一定量的Al。本研究为利用粉末冶金和增材制造方法制备高密度纳米氧化物ODS IN718合金提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PRODUCTION OF OXIDE DISPERSION STRENGTHENED INCONEL 718 ALLOYS USING CONVENTIONAL POWDER METALLURGY AND ADDITIVE MANUFACTURING METHODS
Oxide dispersion strengthened (ODS) Ni-based alloys having a high density of nano-oxides (NOs) (<10 nm) are considered to be good candidates for extreme environments, such as high temperature, radiation, and corrosion. In this study, ODS IN718 alloys have been produced using conventional powder metallurgy (PM) and novel selective laser melting (SLM) additive manufacturing. The effect of processing routes on the microstructure, in particular on the nano-oxide formation and structure has been investigated. It has been found that the powder metallurgy method that consists of compressing followed by sintering at 1250 and 1500 °C results in a nano-granular structure with homogenously distributed fine nano-oxides having a high number density. Similarly, SLM results in a high number density of fine nano-oxides; however, the particles exist in groups with the grains/cells. The nano-oxides are determined to be Y2Ti2O7, Y2TiO5 or YTiO3 and Y-Al-O. The deviation in the lattice parameters of Y2Ti2O7 infers the existence of some Al in the structure. This study sheds light on producing ODS IN718 alloys with high-density nano-oxides using powder metallurgy and additive manufacturing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GIS-AHP APPROACH FOR A COMPREHENSIVE FRAMEWORK TO DETERMINE THE SUITABLE REGIONS FOR GEOTHERMAL POWER PLANTS IN IZMIR, TÜRKİYE MACHINE WHELL EDGE DETECTION MORPHOLOGICAL OPERATIONS PRODUCTION OF CuO/ZrO2 NANOCOMPOSITES IN POWDER AND FIBER FORMS DETERMINATION BY NUMERICAL MODELING OF STRESS-STRAIN VARIATIONS RESULTING FROM GALLERY CROSS-SECTION CHANGES IN A LONGWALL TOP COAL CAVING PANEL ENCAPSULATION OF VITAMIN D IN THE EXINE-ALGINATE-CHITOSAN MICROCAPSULE SYSTEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1