ResGraphNet:内置残差模块的GraphSAGE,用于预测全球月平均温度

Ziwei Chen , Zhiguo Wang , Yang Yang , Jinghuai Gao
{"title":"ResGraphNet:内置残差模块的GraphSAGE,用于预测全球月平均温度","authors":"Ziwei Chen ,&nbsp;Zhiguo Wang ,&nbsp;Yang Yang ,&nbsp;Jinghuai Gao","doi":"10.1016/j.aiig.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven prediction of time series is significant in many scientific research fields such as global climate change and weather forecast. For global monthly mean temperature series, considering the strong potential of deep neural network for extracting data features, this paper proposes a data-driven model, ResGraphNet, which improves the prediction accuracy of time series by an embedded residual module in GraphSAGE layers. The experimental results of a global mean temperature dataset, HadCRUT5, show that compared with 11 traditional prediction technologies, the proposed ResGraphNet obtains the best accuracy. The error indicator predicted by the proposed ResGraphNet is smaller than that of the other 11 prediction models. Furthermore, the performance on seven temperature datasets shows the excellent generalization of the ResGraphNet. Finally, based on our proposed ResGraphNet, the predicted 2022 annual anomaly of global temperature is 0.74722 °C, which provides confidence for limiting warming to 1.5 °C above pre-industrial levels.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"3 ","pages":"Pages 148-156"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544122000314/pdfft?md5=ee2f07a7b856a9a9839f99750242e44a&pid=1-s2.0-S2666544122000314-main.pdf","citationCount":"3","resultStr":"{\"title\":\"ResGraphNet: GraphSAGE with embedded residual module for prediction of global monthly mean temperature\",\"authors\":\"Ziwei Chen ,&nbsp;Zhiguo Wang ,&nbsp;Yang Yang ,&nbsp;Jinghuai Gao\",\"doi\":\"10.1016/j.aiig.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data-driven prediction of time series is significant in many scientific research fields such as global climate change and weather forecast. For global monthly mean temperature series, considering the strong potential of deep neural network for extracting data features, this paper proposes a data-driven model, ResGraphNet, which improves the prediction accuracy of time series by an embedded residual module in GraphSAGE layers. The experimental results of a global mean temperature dataset, HadCRUT5, show that compared with 11 traditional prediction technologies, the proposed ResGraphNet obtains the best accuracy. The error indicator predicted by the proposed ResGraphNet is smaller than that of the other 11 prediction models. Furthermore, the performance on seven temperature datasets shows the excellent generalization of the ResGraphNet. Finally, based on our proposed ResGraphNet, the predicted 2022 annual anomaly of global temperature is 0.74722 °C, which provides confidence for limiting warming to 1.5 °C above pre-industrial levels.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"3 \",\"pages\":\"Pages 148-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000314/pdfft?md5=ee2f07a7b856a9a9839f99750242e44a&pid=1-s2.0-S2666544122000314-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544122000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

时间序列数据驱动预测在全球气候变化、天气预报等诸多科学研究领域具有重要意义。对于全球月平均温度序列,考虑到深度神经网络在提取数据特征方面的强大潜力,本文提出了一种数据驱动模型ResGraphNet,该模型通过在GraphSAGE层中嵌入残差模块来提高时间序列的预测精度。在全球平均温度数据集HadCRUT5上的实验结果表明,与11种传统预测技术相比,本文提出的ResGraphNet的预测精度最高。本文提出的ResGraphNet预测的误差指标小于其他11种预测模型。此外,在7个温度数据集上的性能显示了ResGraphNet的良好泛化效果。最后,基于我们提出的ResGraphNet,预测2022年全球温度的年距平为0.74722°C,这为将升温限制在比工业化前水平高1.5°C提供了信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ResGraphNet: GraphSAGE with embedded residual module for prediction of global monthly mean temperature

Data-driven prediction of time series is significant in many scientific research fields such as global climate change and weather forecast. For global monthly mean temperature series, considering the strong potential of deep neural network for extracting data features, this paper proposes a data-driven model, ResGraphNet, which improves the prediction accuracy of time series by an embedded residual module in GraphSAGE layers. The experimental results of a global mean temperature dataset, HadCRUT5, show that compared with 11 traditional prediction technologies, the proposed ResGraphNet obtains the best accuracy. The error indicator predicted by the proposed ResGraphNet is smaller than that of the other 11 prediction models. Furthermore, the performance on seven temperature datasets shows the excellent generalization of the ResGraphNet. Finally, based on our proposed ResGraphNet, the predicted 2022 annual anomaly of global temperature is 0.74722 °C, which provides confidence for limiting warming to 1.5 °C above pre-industrial levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1