R. Aggarwal, Samanpreet Kaur, Mehraj U Din Dar, Alban Kuriqi
{"title":"气候变化情景在确定混合气候条件地区温度和降雨模式方面的不确定性","authors":"R. Aggarwal, Samanpreet Kaur, Mehraj U Din Dar, Alban Kuriqi","doi":"10.15576/asp.fc/2023.22.1.91","DOIUrl":null,"url":null,"abstract":"Aim of the study: This study aims to quantify uncertainty in climate change impact assessment on crop production by using all available climate models (GCMs) under both harsh and mild emission scenarios from 2020 to 2095, which has not yet been done in the study region. Material and methods: In this regard, a comparative study was carried out for Ludhiana district, Punjab, India, in which Global Climate Model (GCM) outputs for daily maximum (Tmax) and minimum temperature (Tmin) and rainfall under A1B scenario concerning Mid Century (MC) (2020-2050) and End Century (EC) (2070-2095) was extracted from ECHam5-GCM and PRECIS model. DSSAT v.4.6.1 model and Papadakis method were used to study the climate change behavior under these two-time slices. In addition, climate data from RCP scenarios for the future were extracted from five randomly selected GCMs under scenarios RCP 4.5 and RCP 8.5 using the marksim DSSAT weather generator. Results and conclusions: The results showed that the annual minimum temperature would increase by 2.4 °C and 2.45 °C during EC using ECHAM5 and PRECIS models. In contrast, under RCPs 4.5 and 8.5 scenarios, the mean annual temperature would increase by 1.56°C in MC and 3.11°C in EC compared to that of the baseline period and 2.75°C in MC and 5.46°C in EC compared to that of the baseline period, respectively. The corresponding likely decrease in annual RF under RCP 4.5 is 98 mm and 90 mm during MC and EC, respectively. The corresponding increase in annual RF under RCP 8.5 is 153 mm and 251 mm, respectively.","PeriodicalId":51904,"journal":{"name":"Acta Scientiarum Polonorum-Formatio Circumiectus","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNCERTAINTIES IN CLIMATE CHANGE SCENARIOS FOR DETERMINING TEMPERATURE AND RAINFALL PATTERNS IN REGIONS WITH MIXED CLIMATE CONDITIONS\",\"authors\":\"R. Aggarwal, Samanpreet Kaur, Mehraj U Din Dar, Alban Kuriqi\",\"doi\":\"10.15576/asp.fc/2023.22.1.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim of the study: This study aims to quantify uncertainty in climate change impact assessment on crop production by using all available climate models (GCMs) under both harsh and mild emission scenarios from 2020 to 2095, which has not yet been done in the study region. Material and methods: In this regard, a comparative study was carried out for Ludhiana district, Punjab, India, in which Global Climate Model (GCM) outputs for daily maximum (Tmax) and minimum temperature (Tmin) and rainfall under A1B scenario concerning Mid Century (MC) (2020-2050) and End Century (EC) (2070-2095) was extracted from ECHam5-GCM and PRECIS model. DSSAT v.4.6.1 model and Papadakis method were used to study the climate change behavior under these two-time slices. In addition, climate data from RCP scenarios for the future were extracted from five randomly selected GCMs under scenarios RCP 4.5 and RCP 8.5 using the marksim DSSAT weather generator. Results and conclusions: The results showed that the annual minimum temperature would increase by 2.4 °C and 2.45 °C during EC using ECHAM5 and PRECIS models. In contrast, under RCPs 4.5 and 8.5 scenarios, the mean annual temperature would increase by 1.56°C in MC and 3.11°C in EC compared to that of the baseline period and 2.75°C in MC and 5.46°C in EC compared to that of the baseline period, respectively. The corresponding likely decrease in annual RF under RCP 4.5 is 98 mm and 90 mm during MC and EC, respectively. The corresponding increase in annual RF under RCP 8.5 is 153 mm and 251 mm, respectively.\",\"PeriodicalId\":51904,\"journal\":{\"name\":\"Acta Scientiarum Polonorum-Formatio Circumiectus\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Scientiarum Polonorum-Formatio Circumiectus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15576/asp.fc/2023.22.1.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum Polonorum-Formatio Circumiectus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15576/asp.fc/2023.22.1.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
UNCERTAINTIES IN CLIMATE CHANGE SCENARIOS FOR DETERMINING TEMPERATURE AND RAINFALL PATTERNS IN REGIONS WITH MIXED CLIMATE CONDITIONS
Aim of the study: This study aims to quantify uncertainty in climate change impact assessment on crop production by using all available climate models (GCMs) under both harsh and mild emission scenarios from 2020 to 2095, which has not yet been done in the study region. Material and methods: In this regard, a comparative study was carried out for Ludhiana district, Punjab, India, in which Global Climate Model (GCM) outputs for daily maximum (Tmax) and minimum temperature (Tmin) and rainfall under A1B scenario concerning Mid Century (MC) (2020-2050) and End Century (EC) (2070-2095) was extracted from ECHam5-GCM and PRECIS model. DSSAT v.4.6.1 model and Papadakis method were used to study the climate change behavior under these two-time slices. In addition, climate data from RCP scenarios for the future were extracted from five randomly selected GCMs under scenarios RCP 4.5 and RCP 8.5 using the marksim DSSAT weather generator. Results and conclusions: The results showed that the annual minimum temperature would increase by 2.4 °C and 2.45 °C during EC using ECHAM5 and PRECIS models. In contrast, under RCPs 4.5 and 8.5 scenarios, the mean annual temperature would increase by 1.56°C in MC and 3.11°C in EC compared to that of the baseline period and 2.75°C in MC and 5.46°C in EC compared to that of the baseline period, respectively. The corresponding likely decrease in annual RF under RCP 4.5 is 98 mm and 90 mm during MC and EC, respectively. The corresponding increase in annual RF under RCP 8.5 is 153 mm and 251 mm, respectively.