{"title":"FedNet2Net:在模型增长的联邦学习中节省通信和计算","authors":"A. Kundu, J. JáJá","doi":"10.48550/arXiv.2207.09568","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of\"model growing\"is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"51 1","pages":"236-247"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FedNet2Net: Saving Communication and Computations in Federated Learning with Model Growing\",\"authors\":\"A. Kundu, J. JáJá\",\"doi\":\"10.48550/arXiv.2207.09568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of\\\"model growing\\\"is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.\",\"PeriodicalId\":93416,\"journal\":{\"name\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"volume\":\"51 1\",\"pages\":\"236-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.09568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.09568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

联邦学习(FL)是最近发展起来的机器学习领域,它利用大量分布式客户端的私有数据在中央服务器的协调下开发全局模型,而不显式地公开数据。标准的FL策略有许多明显的瓶颈,包括大量的通信需求和对客户端资源的高影响。文献中描述了几种策略,试图解决这些问题。本文提出了一种基于“模型增长”概念的新方案。最初,服务器部署一个低复杂度的小模型,该模型经过训练以在初始轮集期间捕获数据复杂性。当这种模型的性能达到饱和时,服务器会在保留函数的转换的帮助下切换到更大的模型。随着客户端处理的数据越来越多,模型的复杂性也会增加,整个过程会一直持续下去,直到达到预期的性能。因此,在我们的方法中,最复杂的模型仅在最后阶段进行广播,从而大大降低了通信成本和客户端计算需求。所提出的方法在三个标准基准上进行了广泛的测试,结果表明,与当前最有效的策略相比,该方法大大减少了通信和客户机计算,同时实现了相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedNet2Net: Saving Communication and Computations in Federated Learning with Model Growing
Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of"model growing"is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Branch Network Towards Accurate Printed Mathematical Expression Recognition PE-YOLO: Pyramid Enhancement Network for Dark Object Detection Variational Autoencoders for Anomaly Detection in Respiratory Sounds Deep Feature Learning for Medical Acoustics Time Series Forecasting Models Copy the Past: How to Mitigate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1