{"title":"发布计划中的不确定性分析:一种固定日期发布周期的方法与实验","authors":"Olawole Oni, Emmanuel Letier","doi":"10.1145/3490487","DOIUrl":null,"url":null,"abstract":"Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"47 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing Uncertainty in Release Planning: A Method and Experiment for Fixed-Date Release Cycles\",\"authors\":\"Olawole Oni, Emmanuel Letier\",\"doi\":\"10.1145/3490487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.\",\"PeriodicalId\":7398,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"volume\":\"47 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Uncertainty in Release Planning: A Method and Experiment for Fixed-Date Release Cycles
Release planning—deciding what features to implement in upcoming releases of a software system—is a critical activity in iterative software development. Many release planning methods exist, but most ignore the inevitable uncertainty in estimating software development effort and business value. The article’s objective is to study whether analyzing uncertainty during release planning generates better release plans than if uncertainty is ignored. To study this question, we have developed a novel release planning method under uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends release plans that maximize expected net present value and expected punctuality. We then compare release plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release planning problems. The experiment shows that BEARS recommends release plans with higher expected net present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and analyzing uncertainty in software effort and value estimations and call for increased research in these areas.