排序流程车间作业调度和预测性维护的定制遗传算法

A. Ladj, F. B. Tayeb, C. Varnier
{"title":"排序流程车间作业调度和预测性维护的定制遗传算法","authors":"A. Ladj, F. B. Tayeb, C. Varnier","doi":"10.1109/ETFA.2018.8502462","DOIUrl":null,"url":null,"abstract":"We tackle in this paper the Permutation Flow-shop Scheduling Problem (PFSP) with predictive maintenance interventions. The objective is to propose an integrated model that coordinates production schedule and predictive maintenance planning so that the total time to complete the schedule after predictive maintenance insertion is minimized. Predictive maintenance interventions are scheduled based on Prognostics and Health Management (PHM) results using a new proposed heuristic. To jointly establish an integrated scheduling of production jobs and predictive maintenance actions, we propose a tailored genetic algorithm incorporating properly designed operators. Computational experiments carried out on Taillard well known benchmarks, to which we add both PHM and maintenance data, show the efficiency of the newly proposed maintenance planning heuristic and genetic algorithm.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"65 2 1","pages":"524-531"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tailored Genetic Algorithm for Scheduling Jobs and Predictive Maintenance in a Permutation Flowshop\",\"authors\":\"A. Ladj, F. B. Tayeb, C. Varnier\",\"doi\":\"10.1109/ETFA.2018.8502462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle in this paper the Permutation Flow-shop Scheduling Problem (PFSP) with predictive maintenance interventions. The objective is to propose an integrated model that coordinates production schedule and predictive maintenance planning so that the total time to complete the schedule after predictive maintenance insertion is minimized. Predictive maintenance interventions are scheduled based on Prognostics and Health Management (PHM) results using a new proposed heuristic. To jointly establish an integrated scheduling of production jobs and predictive maintenance actions, we propose a tailored genetic algorithm incorporating properly designed operators. Computational experiments carried out on Taillard well known benchmarks, to which we add both PHM and maintenance data, show the efficiency of the newly proposed maintenance planning heuristic and genetic algorithm.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"65 2 1\",\"pages\":\"524-531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了具有预测性维护干预的置换流车间调度问题。目标是提出一个协调生产计划和预测性维护计划的集成模型,以便在预测性维护插入后完成计划的总时间最小化。预测性维护干预是基于预测和健康管理(PHM)的结果,使用一种新的启发式方法。为了共同建立生产作业和预测性维护行动的集成调度,我们提出了一种定制的遗传算法,其中包含适当设计的操作员。在Taillard知名基准测试中,我们将PHM和维护数据都加入其中,并进行了计算实验,结果表明了新提出的启发式和遗传算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailored Genetic Algorithm for Scheduling Jobs and Predictive Maintenance in a Permutation Flowshop
We tackle in this paper the Permutation Flow-shop Scheduling Problem (PFSP) with predictive maintenance interventions. The objective is to propose an integrated model that coordinates production schedule and predictive maintenance planning so that the total time to complete the schedule after predictive maintenance insertion is minimized. Predictive maintenance interventions are scheduled based on Prognostics and Health Management (PHM) results using a new proposed heuristic. To jointly establish an integrated scheduling of production jobs and predictive maintenance actions, we propose a tailored genetic algorithm incorporating properly designed operators. Computational experiments carried out on Taillard well known benchmarks, to which we add both PHM and maintenance data, show the efficiency of the newly proposed maintenance planning heuristic and genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling and Situation-Adaptive Operation for Energy Efficiency of Hot Press Forging Factory Application of the Internet of Things (IoT) Technology in Consumer Electronics - Case Study Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets A Prototype Implementation of Wi-Fi Seamless Redundancy with Reactive Duplication Avoidance Continuous Maintenance System for Optimal Scheduling Based on Real-Time Machine Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1