实验中3d打印植入物的组织学检查及生物相容性评价。

D. Kuliesh, N. Galatenko, R. Rozhnova, V. Gritsenko, A. Bogdan, V. B. Volkov
{"title":"实验中3d打印植入物的组织学检查及生物相容性评价。","authors":"D. Kuliesh, N. Galatenko, R. Rozhnova, V. Gritsenko, A. Bogdan, V. B. Volkov","doi":"10.26641/1997-9665.2020.1.35-41","DOIUrl":null,"url":null,"abstract":"Background. High levels of musculoskeletal injuries, pathologies and various diseases of bone tissue encourage researchers around the world to actively seek out new and improve existing implant materials for high-quality reconstructive and restorative operations on bone tissue. Objective. Histological examination and evaluation of biocompatibility of 3-D printed implants after implantation in experimental animals. Methods. 3-D printed materials were implanted into the white laboratory rats Wistar for 1, 4, and 12 weeks. The cellular reactions of the organism and possible changes in the structure of the test specimens after implantation were studied by light microscopy by histological micropreparation analysis. Results. Histological examination was performed and the nature and dynamics of cellular responses after implantation of 3-D printed materials were evaluated. Conclusion. It was found that cellular migration and germination of connective tissue tendons deep into the implants due to the porous structure of 3-D printed material based on ceramics, resulted in partial degradation, which slightly increased the intensity of cellular reactions at all study periods. It was found that the intensity of cellular reactions was minimal in the early stages of the study around polymer-based 3-D printed material, but 12 weeks after implantation, cellular responses were increased. It is shown that implantation of 3-D printed materials into the body of experimental animals led to the development of cellular responses typical of aseptic inflammation, which testified to their biocompatibility.","PeriodicalId":19107,"journal":{"name":"Morphologia","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histological examination and evaluation of biocompatibility of 3-D printed implants in the experiment.\",\"authors\":\"D. Kuliesh, N. Galatenko, R. Rozhnova, V. Gritsenko, A. Bogdan, V. B. Volkov\",\"doi\":\"10.26641/1997-9665.2020.1.35-41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background. High levels of musculoskeletal injuries, pathologies and various diseases of bone tissue encourage researchers around the world to actively seek out new and improve existing implant materials for high-quality reconstructive and restorative operations on bone tissue. Objective. Histological examination and evaluation of biocompatibility of 3-D printed implants after implantation in experimental animals. Methods. 3-D printed materials were implanted into the white laboratory rats Wistar for 1, 4, and 12 weeks. The cellular reactions of the organism and possible changes in the structure of the test specimens after implantation were studied by light microscopy by histological micropreparation analysis. Results. Histological examination was performed and the nature and dynamics of cellular responses after implantation of 3-D printed materials were evaluated. Conclusion. It was found that cellular migration and germination of connective tissue tendons deep into the implants due to the porous structure of 3-D printed material based on ceramics, resulted in partial degradation, which slightly increased the intensity of cellular reactions at all study periods. It was found that the intensity of cellular reactions was minimal in the early stages of the study around polymer-based 3-D printed material, but 12 weeks after implantation, cellular responses were increased. It is shown that implantation of 3-D printed materials into the body of experimental animals led to the development of cellular responses typical of aseptic inflammation, which testified to their biocompatibility.\",\"PeriodicalId\":19107,\"journal\":{\"name\":\"Morphologia\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Morphologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26641/1997-9665.2020.1.35-41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Morphologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26641/1997-9665.2020.1.35-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histological examination and evaluation of biocompatibility of 3-D printed implants in the experiment.
Background. High levels of musculoskeletal injuries, pathologies and various diseases of bone tissue encourage researchers around the world to actively seek out new and improve existing implant materials for high-quality reconstructive and restorative operations on bone tissue. Objective. Histological examination and evaluation of biocompatibility of 3-D printed implants after implantation in experimental animals. Methods. 3-D printed materials were implanted into the white laboratory rats Wistar for 1, 4, and 12 weeks. The cellular reactions of the organism and possible changes in the structure of the test specimens after implantation were studied by light microscopy by histological micropreparation analysis. Results. Histological examination was performed and the nature and dynamics of cellular responses after implantation of 3-D printed materials were evaluated. Conclusion. It was found that cellular migration and germination of connective tissue tendons deep into the implants due to the porous structure of 3-D printed material based on ceramics, resulted in partial degradation, which slightly increased the intensity of cellular reactions at all study periods. It was found that the intensity of cellular reactions was minimal in the early stages of the study around polymer-based 3-D printed material, but 12 weeks after implantation, cellular responses were increased. It is shown that implantation of 3-D printed materials into the body of experimental animals led to the development of cellular responses typical of aseptic inflammation, which testified to their biocompatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphological characteristic of premature infants’s kidneys with opened Ductus Arteriosis (by the autopsy). Analysis of the malignant ovarian tumors incidence in the Sumy region in 2014-2018. Pancreatic stellate cells: the top managers of the pancreatic tumor microenvironment. Histology and Cell Biology: An Introduction to Pathology 5th Edition 2020 To the anniversary of Professor Antonina Mykhailivna Yashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1