{"title":"硅烯的电子、磁性和光学性质的理论综述","authors":"S. Chowdhury, D. Jana","doi":"10.1088/0034-4885/79/12/126501","DOIUrl":null,"url":null,"abstract":"Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin–orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"37 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2016-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"153","resultStr":"{\"title\":\"A theoretical review on electronic, magnetic and optical properties of silicene\",\"authors\":\"S. Chowdhury, D. Jana\",\"doi\":\"10.1088/0034-4885/79/12/126501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin–orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2016-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"153\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/0034-4885/79/12/126501\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0034-4885/79/12/126501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A theoretical review on electronic, magnetic and optical properties of silicene
Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin–orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.