{"title":"振荡振幅对中尺度振荡折流板反应器停留时间分布的影响","authors":"H. W. Yussof, S. Bahri, A. Phan, Ap Harvey","doi":"10.3329/CERB.V19I0.33804","DOIUrl":null,"url":null,"abstract":"A recent development in oscillatory baffled reactor technology is down-scaling the reactor, so that it can be used for the applications such as small-scale continuous production of bioethanol. A mesoscale oscillatory baffled reactor (MOBR) with central baffle system was developed and fabricated at mesoscales (typically 5 mm diameter). This present work aims to analyse the mixing conditions inside the MOBR by evaluating the residence time distribution (RTD) against the dynamic parameters of net flow Reynolds number ( Re n ) at 4.2, 8.4 and 12.6 corresponding to flow rates of 1.0, 2.0 and 3.0 ml/min respectively, oscillatory Reynolds number ( Re o ) between 62 to 622, and Strouhal number ( Str ) between 0.1 to 1.59. The effect of oscillation frequency and amplitude on RTD performance were studied at frequency, amplitude, and velocity ratio ranging from 4 to 8 Hz, 1 to 4 mm and 1 to 118, respectively. Effect of oscillation frequency has resulted in the variance of the RTD increased as the oscillation frequency increased from 5 Hz to 8 Hz and peak at 6 Hz of 0.264. A further increase in the frequency above 5 Hz caused the RTD to slightly broaden and positively skewed. At frequency of 5 Hz, the RTD profiles were close to Gaussian form for all tested amplitude values from 1 mm to 4 mm. At low amplitudes, i.e. xo = 1 mm, the variance exhibited its minimum around 0.842 at Re o =156. An increase in Re o above 300 resulted in increased in the variance rapidly to 1.28, and later eliminated the plug flow behaviour and the reactor behaved similar to a single continuous stirred tank reactor. Chemical Engineering Research Bulletin 19(2017) 111-117","PeriodicalId":9756,"journal":{"name":"Chemical Engineering Research Bulletin","volume":"150 1","pages":"111-117"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Oscillation Amplitude on the Residence Time Distribution for the Mesoscale Oscillatory Baffled Reactor\",\"authors\":\"H. W. Yussof, S. Bahri, A. Phan, Ap Harvey\",\"doi\":\"10.3329/CERB.V19I0.33804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent development in oscillatory baffled reactor technology is down-scaling the reactor, so that it can be used for the applications such as small-scale continuous production of bioethanol. A mesoscale oscillatory baffled reactor (MOBR) with central baffle system was developed and fabricated at mesoscales (typically 5 mm diameter). This present work aims to analyse the mixing conditions inside the MOBR by evaluating the residence time distribution (RTD) against the dynamic parameters of net flow Reynolds number ( Re n ) at 4.2, 8.4 and 12.6 corresponding to flow rates of 1.0, 2.0 and 3.0 ml/min respectively, oscillatory Reynolds number ( Re o ) between 62 to 622, and Strouhal number ( Str ) between 0.1 to 1.59. The effect of oscillation frequency and amplitude on RTD performance were studied at frequency, amplitude, and velocity ratio ranging from 4 to 8 Hz, 1 to 4 mm and 1 to 118, respectively. Effect of oscillation frequency has resulted in the variance of the RTD increased as the oscillation frequency increased from 5 Hz to 8 Hz and peak at 6 Hz of 0.264. A further increase in the frequency above 5 Hz caused the RTD to slightly broaden and positively skewed. At frequency of 5 Hz, the RTD profiles were close to Gaussian form for all tested amplitude values from 1 mm to 4 mm. At low amplitudes, i.e. xo = 1 mm, the variance exhibited its minimum around 0.842 at Re o =156. An increase in Re o above 300 resulted in increased in the variance rapidly to 1.28, and later eliminated the plug flow behaviour and the reactor behaved similar to a single continuous stirred tank reactor. Chemical Engineering Research Bulletin 19(2017) 111-117\",\"PeriodicalId\":9756,\"journal\":{\"name\":\"Chemical Engineering Research Bulletin\",\"volume\":\"150 1\",\"pages\":\"111-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/CERB.V19I0.33804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/CERB.V19I0.33804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Oscillation Amplitude on the Residence Time Distribution for the Mesoscale Oscillatory Baffled Reactor
A recent development in oscillatory baffled reactor technology is down-scaling the reactor, so that it can be used for the applications such as small-scale continuous production of bioethanol. A mesoscale oscillatory baffled reactor (MOBR) with central baffle system was developed and fabricated at mesoscales (typically 5 mm diameter). This present work aims to analyse the mixing conditions inside the MOBR by evaluating the residence time distribution (RTD) against the dynamic parameters of net flow Reynolds number ( Re n ) at 4.2, 8.4 and 12.6 corresponding to flow rates of 1.0, 2.0 and 3.0 ml/min respectively, oscillatory Reynolds number ( Re o ) between 62 to 622, and Strouhal number ( Str ) between 0.1 to 1.59. The effect of oscillation frequency and amplitude on RTD performance were studied at frequency, amplitude, and velocity ratio ranging from 4 to 8 Hz, 1 to 4 mm and 1 to 118, respectively. Effect of oscillation frequency has resulted in the variance of the RTD increased as the oscillation frequency increased from 5 Hz to 8 Hz and peak at 6 Hz of 0.264. A further increase in the frequency above 5 Hz caused the RTD to slightly broaden and positively skewed. At frequency of 5 Hz, the RTD profiles were close to Gaussian form for all tested amplitude values from 1 mm to 4 mm. At low amplitudes, i.e. xo = 1 mm, the variance exhibited its minimum around 0.842 at Re o =156. An increase in Re o above 300 resulted in increased in the variance rapidly to 1.28, and later eliminated the plug flow behaviour and the reactor behaved similar to a single continuous stirred tank reactor. Chemical Engineering Research Bulletin 19(2017) 111-117