基于地图的粒子滤波定位:自动驾驶汽车

Supriya Katwe, N. Iyer
{"title":"基于地图的粒子滤波定位:自动驾驶汽车","authors":"Supriya Katwe, N. Iyer","doi":"10.1109/ComPE49325.2020.9200067","DOIUrl":null,"url":null,"abstract":"The main task in navigation of an autonomous vehicle is to have accurate and robust localization. There are variety of localization techniques in study using particle filter; for localization with or without using map information in the measurements. There is a lack of study in localization methods employing map data in particle filter. This paper summarizes the localization techniques that use map information in particle filter for estimation. The study of various literature in the particle filter for localization using map data shows that, accurate and robust localization can be achieved for an autonomous vehicle provided the map to be used in the measurements is constructed precisely with the necessary features like road curbs, edges, trajectories etc.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"35 1","pages":"303-304"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Map-Based Particle Filter for Localization: Autonomous Vehicle\",\"authors\":\"Supriya Katwe, N. Iyer\",\"doi\":\"10.1109/ComPE49325.2020.9200067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main task in navigation of an autonomous vehicle is to have accurate and robust localization. There are variety of localization techniques in study using particle filter; for localization with or without using map information in the measurements. There is a lack of study in localization methods employing map data in particle filter. This paper summarizes the localization techniques that use map information in particle filter for estimation. The study of various literature in the particle filter for localization using map data shows that, accurate and robust localization can be achieved for an autonomous vehicle provided the map to be used in the measurements is constructed precisely with the necessary features like road curbs, edges, trajectories etc.\",\"PeriodicalId\":6804,\"journal\":{\"name\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"35 1\",\"pages\":\"303-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE49325.2020.9200067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动驾驶汽车导航的主要任务是实现准确、鲁棒的定位。利用粒子滤波进行定位研究的方法多种多样;在测量中使用或不使用地图信息进行定位。在粒子滤波中利用地图数据进行定位的方法研究较少。本文综述了在粒子滤波中利用地图信息进行估计的定位技术。对利用地图数据进行粒子滤波定位的各种文献的研究表明,只要在测量中使用的地图精确地构建了必要的特征,如路缘、边缘、轨迹等,就可以实现自动驾驶汽车的精确和鲁棒定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Map-Based Particle Filter for Localization: Autonomous Vehicle
The main task in navigation of an autonomous vehicle is to have accurate and robust localization. There are variety of localization techniques in study using particle filter; for localization with or without using map information in the measurements. There is a lack of study in localization methods employing map data in particle filter. This paper summarizes the localization techniques that use map information in particle filter for estimation. The study of various literature in the particle filter for localization using map data shows that, accurate and robust localization can be achieved for an autonomous vehicle provided the map to be used in the measurements is constructed precisely with the necessary features like road curbs, edges, trajectories etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Architecture Search with Improved Genetic Algorithm for Image Classification Electricity Demand Prediction using Data Driven Forecasting Scheme: ARIMA and SARIMA for Real-Time Load Data of Assam Freeware Solution for Preventing Data Leakage by Insider for Windows Framework Developing a Highly Secure and High Capacity LSB Steganography Technique using PRNG Assessment of Technical Parameters of Renewable Energy System : An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1