基于传感器数据的田纳西伊士曼过程故障隔离的人工智能方法

M. G. Zarch, Mohsen N. Soltani
{"title":"基于传感器数据的田纳西伊士曼过程故障隔离的人工智能方法","authors":"M. G. Zarch, Mohsen N. Soltani","doi":"10.1109/IECON43393.2020.9255330","DOIUrl":null,"url":null,"abstract":"An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"16 1","pages":"417-422"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An artificial intelligence approach to fault isolation based on sensor data in Tennessee Eastman process\",\"authors\":\"M. G. Zarch, Mohsen N. Soltani\",\"doi\":\"10.1109/IECON43393.2020.9255330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"16 1\",\"pages\":\"417-422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9255330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9255330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的故障诊断方案可以提高系统的安全性和可靠性。人工智能(AI)为解决这一问题提供了一个很好的框架。深度学习是人工智能的成功实现,其优越的隔离性能在故障诊断领域发挥了作用。本研究基于卷积神经网络(CNN)的特征提取能力,开发了一种深度网络来隔离田纳西伊士曼过程中不同类型的故障。该网络具有端到端结构,共13层,采用原始传感器数据,隔离性能超过98%。通过与使用主成分分析(PCA)进行特征提取的线性分类器和具有2个隐藏层的神经网络(NN)作为非线性分类器的比较,证明了所提出的故障隔离方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial intelligence approach to fault isolation based on sensor data in Tennessee Eastman process
An effective fault diagnosis scheme can improve system’s safety and reliability. Artificial Intelligence (AI) provides a good framework to deal with this issue. Deep learning is a successful implementation of AI that its superior isolation performance find its way in fault diagnosis area. In this study, based on feature extraction abilities of Convolutional Neural Network (CNN), a deep network have been developed in order to isolate different kinds of faults in Tennessee Eastman process. This network has an end-to-end structure with 13 layers that takes raw sensor’s data and has isolation performance of more than 98 percent. A comparison between our proposed method and a linear classifier that uses Principal Component Analysis(PCA) for feature extraction and a Neural Network (NN) with 2 hidden layers as nonlinear classifier have been conducted to show the performance of the proposed fault isolation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1