V. Groenhuis, F. Siepel, J. Veltman, S. Stramigioli
{"title":"Stormram 4的设计和特性:一个mri兼容的乳房活检机器人系统","authors":"V. Groenhuis, F. Siepel, J. Veltman, S. Stramigioli","doi":"10.1109/IROS.2017.8202256","DOIUrl":null,"url":null,"abstract":"Targeting of small lesions with high precision is essential in an early phase of breast cancer for diagnosis and accurate follow up, and subsequently determines prognosis. Current techniques to diagnose breast cancer are suboptimal, and there is a need for a small, MRI-compatible robotic system able to target lesions with high precision and direct feedback of MRI. Therefore, the design and working mechanism of the new Stormram 4, an MRI-compatible needle manipulator with four degrees of freedom, will be presented to take biopsies of small lesions in the MRI scanner. Its dimensions (excluding racks and needle) are 72×51×40 mm, and the system is driven by two linear and two curved pneumatic stepper motors. The T-26 linear motor measures 26×21×16 mm, has a nominal step size of 0.25 mm and the measured maximum force is 63N at 0.65 MPa. The workspace has a total volume of 2.2 L. Accuracy measurements have shown that the mean positioning error is 0.7 mm, with a reproducibility of 0.1 mm. Velocity measurements with 5 m long tubes show a maximum stepping frequency of 8 Hz (maximum force) to 30 Hz (unloaded). These results show that the robot might be able to target lesions with sub-millimeter accuracy within reasonable time for the MRI-guided breast biopsy procedure.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"78 1","pages":"928-933"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Design and characterization of Stormram 4: An MRI-compatible robotic system for breast biopsy\",\"authors\":\"V. Groenhuis, F. Siepel, J. Veltman, S. Stramigioli\",\"doi\":\"10.1109/IROS.2017.8202256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeting of small lesions with high precision is essential in an early phase of breast cancer for diagnosis and accurate follow up, and subsequently determines prognosis. Current techniques to diagnose breast cancer are suboptimal, and there is a need for a small, MRI-compatible robotic system able to target lesions with high precision and direct feedback of MRI. Therefore, the design and working mechanism of the new Stormram 4, an MRI-compatible needle manipulator with four degrees of freedom, will be presented to take biopsies of small lesions in the MRI scanner. Its dimensions (excluding racks and needle) are 72×51×40 mm, and the system is driven by two linear and two curved pneumatic stepper motors. The T-26 linear motor measures 26×21×16 mm, has a nominal step size of 0.25 mm and the measured maximum force is 63N at 0.65 MPa. The workspace has a total volume of 2.2 L. Accuracy measurements have shown that the mean positioning error is 0.7 mm, with a reproducibility of 0.1 mm. Velocity measurements with 5 m long tubes show a maximum stepping frequency of 8 Hz (maximum force) to 30 Hz (unloaded). These results show that the robot might be able to target lesions with sub-millimeter accuracy within reasonable time for the MRI-guided breast biopsy procedure.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"78 1\",\"pages\":\"928-933\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8202256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8202256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and characterization of Stormram 4: An MRI-compatible robotic system for breast biopsy
Targeting of small lesions with high precision is essential in an early phase of breast cancer for diagnosis and accurate follow up, and subsequently determines prognosis. Current techniques to diagnose breast cancer are suboptimal, and there is a need for a small, MRI-compatible robotic system able to target lesions with high precision and direct feedback of MRI. Therefore, the design and working mechanism of the new Stormram 4, an MRI-compatible needle manipulator with four degrees of freedom, will be presented to take biopsies of small lesions in the MRI scanner. Its dimensions (excluding racks and needle) are 72×51×40 mm, and the system is driven by two linear and two curved pneumatic stepper motors. The T-26 linear motor measures 26×21×16 mm, has a nominal step size of 0.25 mm and the measured maximum force is 63N at 0.65 MPa. The workspace has a total volume of 2.2 L. Accuracy measurements have shown that the mean positioning error is 0.7 mm, with a reproducibility of 0.1 mm. Velocity measurements with 5 m long tubes show a maximum stepping frequency of 8 Hz (maximum force) to 30 Hz (unloaded). These results show that the robot might be able to target lesions with sub-millimeter accuracy within reasonable time for the MRI-guided breast biopsy procedure.