Suchetha N V, S. ., Susheel C. Nagur, V. B S, Varun S Hiremat
{"title":"基于鲁棒机器学习算法的中风预测性能分析","authors":"Suchetha N V, S. ., Susheel C. Nagur, V. B S, Varun S Hiremat","doi":"10.46610/jodmm.2022.v07i02.002","DOIUrl":null,"url":null,"abstract":"Stroke is one of the major causes of mortality all over the world. Stroke is caused when the blood flow to the brain is obstructed. The poor blood flow causes death of brain cells and eventually, it may result in death of the person. In this work, three different machine learning algorithms are being used for the prediction of stroke risk, Decision Tree, K Nearest Neighbors and Random Forest. Among these, Random Forest model provides better accuracy of 94.1%. As Compared to traditional methods, using machine learning for the prediction of stroke is convenient and also economical.","PeriodicalId":43061,"journal":{"name":"International Journal of Data Mining Modelling and Management","volume":"108 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Stroke Prediction using Robust Machine Learning Algorithms\",\"authors\":\"Suchetha N V, S. ., Susheel C. Nagur, V. B S, Varun S Hiremat\",\"doi\":\"10.46610/jodmm.2022.v07i02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke is one of the major causes of mortality all over the world. Stroke is caused when the blood flow to the brain is obstructed. The poor blood flow causes death of brain cells and eventually, it may result in death of the person. In this work, three different machine learning algorithms are being used for the prediction of stroke risk, Decision Tree, K Nearest Neighbors and Random Forest. Among these, Random Forest model provides better accuracy of 94.1%. As Compared to traditional methods, using machine learning for the prediction of stroke is convenient and also economical.\",\"PeriodicalId\":43061,\"journal\":{\"name\":\"International Journal of Data Mining Modelling and Management\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining Modelling and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46610/jodmm.2022.v07i02.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Modelling and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/jodmm.2022.v07i02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Performance Analysis of Stroke Prediction using Robust Machine Learning Algorithms
Stroke is one of the major causes of mortality all over the world. Stroke is caused when the blood flow to the brain is obstructed. The poor blood flow causes death of brain cells and eventually, it may result in death of the person. In this work, three different machine learning algorithms are being used for the prediction of stroke risk, Decision Tree, K Nearest Neighbors and Random Forest. Among these, Random Forest model provides better accuracy of 94.1%. As Compared to traditional methods, using machine learning for the prediction of stroke is convenient and also economical.
期刊介绍:
Facilitating transformation from data to information to knowledge is paramount for organisations. Companies are flooded with data and conflicting information, but with limited real usable knowledge. However, rarely should a process be looked at from limited angles or in parts. Isolated islands of data mining, modelling and management (DMMM) should be connected. IJDMMM highlightes integration of DMMM, statistics/machine learning/databases, each element of data chain management, types of information, algorithms in software; from data pre-processing to post-processing; between theory and applications. Topics covered include: -Artificial intelligence- Biomedical science- Business analytics/intelligence, process modelling- Computer science, database management systems- Data management, mining, modelling, warehousing- Engineering- Environmental science, environment (ecoinformatics)- Information systems/technology, telecommunications/networking- Management science, operations research, mathematics/statistics- Social sciences- Business/economics, (computational) finance- Healthcare, medicine, pharmaceuticals- (Computational) chemistry, biology (bioinformatics)- Sustainable mobility systems, intelligent transportation systems- National security