{"title":"Darrieus-Savonius混合型风力机气动性能数值研究","authors":"Z. Pouransari, Mohadese Behzad","doi":"10.1177/0309524x231188950","DOIUrl":null,"url":null,"abstract":"A numerical simulation study on the combination of a Darrieus and a Savonius wind turbine is conducted. Hybrid T-II, T-III, and T-IV turbines are suggested with the same Darrieus turbine T-I. In the T-II and T-III, the Savonius turbine is at the center of the Darrieus turbine, whereas in the T-IV, the Savonius turbine is above the Darrieus turbine. The T-III Savonius turbine has half the radius of that of the T-II turbine. Results reveal that variations of the power coefficients, Cp with the tip speed ratio, TSR for the hybrid turbines have different slopes. It is observed that Cp increases with increasing TSR for the T-II and T-IV and does not decrease for the range of TSRs considered, in contrast with the Cp behavior of the T-I. The proposed hybrid T-IV turbine has also a larger Cp than the T-I turbine at the highest TSR.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"62 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the aerodynamic performance of a hybrid Darrieus-Savonius wind turbine\",\"authors\":\"Z. Pouransari, Mohadese Behzad\",\"doi\":\"10.1177/0309524x231188950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical simulation study on the combination of a Darrieus and a Savonius wind turbine is conducted. Hybrid T-II, T-III, and T-IV turbines are suggested with the same Darrieus turbine T-I. In the T-II and T-III, the Savonius turbine is at the center of the Darrieus turbine, whereas in the T-IV, the Savonius turbine is above the Darrieus turbine. The T-III Savonius turbine has half the radius of that of the T-II turbine. Results reveal that variations of the power coefficients, Cp with the tip speed ratio, TSR for the hybrid turbines have different slopes. It is observed that Cp increases with increasing TSR for the T-II and T-IV and does not decrease for the range of TSRs considered, in contrast with the Cp behavior of the T-I. The proposed hybrid T-IV turbine has also a larger Cp than the T-I turbine at the highest TSR.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x231188950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231188950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical investigation of the aerodynamic performance of a hybrid Darrieus-Savonius wind turbine
A numerical simulation study on the combination of a Darrieus and a Savonius wind turbine is conducted. Hybrid T-II, T-III, and T-IV turbines are suggested with the same Darrieus turbine T-I. In the T-II and T-III, the Savonius turbine is at the center of the Darrieus turbine, whereas in the T-IV, the Savonius turbine is above the Darrieus turbine. The T-III Savonius turbine has half the radius of that of the T-II turbine. Results reveal that variations of the power coefficients, Cp with the tip speed ratio, TSR for the hybrid turbines have different slopes. It is observed that Cp increases with increasing TSR for the T-II and T-IV and does not decrease for the range of TSRs considered, in contrast with the Cp behavior of the T-I. The proposed hybrid T-IV turbine has also a larger Cp than the T-I turbine at the highest TSR.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.