末端深度计算的人工神经网络模型

A. Mohammed
{"title":"末端深度计算的人工神经网络模型","authors":"A. Mohammed","doi":"10.4172/2165-784X.1000316","DOIUrl":null,"url":null,"abstract":"In this paper a feed-forward back-propagation type of neural network as well as the multi nonlinear regression model using statistical programming were used to determine the critical depth and discharge passing over the enddepth model, free overfall. This was achieved by training and validating (215) experimental data. The results of the trained verified and tested for neural network model are compared to the experimental measurements. There were well agreements with the measured values.","PeriodicalId":52256,"journal":{"name":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Artificial Neural Network (ANN) Model for End Depth Computations\",\"authors\":\"A. Mohammed\",\"doi\":\"10.4172/2165-784X.1000316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a feed-forward back-propagation type of neural network as well as the multi nonlinear regression model using statistical programming were used to determine the critical depth and discharge passing over the enddepth model, free overfall. This was achieved by training and validating (215) experimental data. The results of the trained verified and tested for neural network model are compared to the experimental measurements. There were well agreements with the measured values.\",\"PeriodicalId\":52256,\"journal\":{\"name\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4172/2165-784X.1000316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2165-784X.1000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文采用前馈反向传播型神经网络和基于统计规划的多元非线性回归模型来确定临界深度和流量越过终点深度模型——自由溢流。这是通过训练和验证(215)实验数据实现的。将神经网络模型的训练验证和测试结果与实验测量结果进行了比较。与实测值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network (ANN) Model for End Depth Computations
In this paper a feed-forward back-propagation type of neural network as well as the multi nonlinear regression model using statistical programming were used to determine the critical depth and discharge passing over the enddepth model, free overfall. This was achieved by training and validating (215) experimental data. The results of the trained verified and tested for neural network model are compared to the experimental measurements. There were well agreements with the measured values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
5346
期刊最新文献
استخراج منحنیهای شدت-مدت-فراوانی به کمک نظریه فرکتال و ارزیابی اثر تغییر اقلیم بر آن (مطالعه موردی: بوشهر) Investigation of the effect of gabion-shaped obstacles on sedimentation Probabilistic zoning of hydraulic performance of water distribution network by applying key parameter uncertainty Evaluation of doubler plates effects on shear bearing behavior of RCS connections مقایسه عملکرد ترافیکی، مصرف سوخت، و آلایندگی تقاطع دارای چراغ و دوربرگردان در بزرگراههای شش-خطه
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1