{"title":"化学共沉淀法制备双相混合锌钴铁氧体纳米颗粒的合成及表征研究","authors":"Rohit R. Powar, Ashok B. Gadkari, Pravina B. Piste, Dnyandevo N. Zambare","doi":"10.5185/amp2018/6997","DOIUrl":null,"url":null,"abstract":"Nanoparticles of Zinc substituted Cobalt ferrite powders having general formula ZnxCo1-xFe2O4 (x = 0, 0.25, 0.5, 0.75, 1.0) have been produced by using analytical grade nitrates and hexadecyltrimethylammonium bromide (CTAB) as structure directing reagent via Chemical co-precipitation method. The structure and morphology of prepared polycrystalline ferrite nanoparticles were investigated by X-ray diffraction (XRD), Fourier Transform Infrared Radiation (FTIR) and Scanning electron microscopy (SEM) respectively. Thermogravimetric differential analysis (TG/DTA) technique gives information about ferrite phase formation occurs beyond 450 oC. The XRD analysis confirms the establishment of the cubic spinel structure with the presence of minor secondary phase of α-Fe2O3 (hematite) at a calcination temperature of 650 oC. The polycrystalline mixed zinc cobalt ferrite nanoparticles showed a dual phase and crystallite size lies in the range 6-11 nm. FE-SEM microstructure shows the nearly spherical polycrystalline nanoparticles with a particle size in between 0.11-0.20 μm. The FT-IR spectra display two significant strong absorption bands nearby in the range of 400 cm and 600 cm on the tetrahedral and octahedral sites respectively. Copyright © 2018 VBRI Press.","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis and characterization study of dual phase mixed zinc cobalt ferrite nanoparticles prepared via chemical co-precipitation method\",\"authors\":\"Rohit R. Powar, Ashok B. Gadkari, Pravina B. Piste, Dnyandevo N. Zambare\",\"doi\":\"10.5185/amp2018/6997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles of Zinc substituted Cobalt ferrite powders having general formula ZnxCo1-xFe2O4 (x = 0, 0.25, 0.5, 0.75, 1.0) have been produced by using analytical grade nitrates and hexadecyltrimethylammonium bromide (CTAB) as structure directing reagent via Chemical co-precipitation method. The structure and morphology of prepared polycrystalline ferrite nanoparticles were investigated by X-ray diffraction (XRD), Fourier Transform Infrared Radiation (FTIR) and Scanning electron microscopy (SEM) respectively. Thermogravimetric differential analysis (TG/DTA) technique gives information about ferrite phase formation occurs beyond 450 oC. The XRD analysis confirms the establishment of the cubic spinel structure with the presence of minor secondary phase of α-Fe2O3 (hematite) at a calcination temperature of 650 oC. The polycrystalline mixed zinc cobalt ferrite nanoparticles showed a dual phase and crystallite size lies in the range 6-11 nm. FE-SEM microstructure shows the nearly spherical polycrystalline nanoparticles with a particle size in between 0.11-0.20 μm. The FT-IR spectra display two significant strong absorption bands nearby in the range of 400 cm and 600 cm on the tetrahedral and octahedral sites respectively. Copyright © 2018 VBRI Press.\",\"PeriodicalId\":7297,\"journal\":{\"name\":\"Advanced Materials Proceedings\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5185/amp2018/6997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5185/amp2018/6997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4