表征由于水峰变化而引起的水文变化的指标

IF 4.6 Q2 ENVIRONMENTAL SCIENCES Journal of ecohydraulics Pub Date : 2021-06-15 DOI:10.1080/24705357.2020.1871307
D. Courret, P. Baran, M. Larinier
{"title":"表征由于水峰变化而引起的水文变化的指标","authors":"D. Courret, P. Baran, M. Larinier","doi":"10.1080/24705357.2020.1871307","DOIUrl":null,"url":null,"abstract":"Abstract Hydropeaking by hydroelectric facilities generates sudden changes in river flows and can affect the composition, abundance and structure of fish and invertebrate populations over long distances. To assess the level of hydrological alteration, as a factor of risk of biological impacts, a synthetic indicator was developed. Based on the analysis of 97 hydrometric stations and 1575 years of unaltered flow data, rates of change in flow were calculated. Formulas representing the fastest natural variations, depending on the mean stream flow, the type of variation (increase or decrease) and the range of variation were established. Based on the analysis of 80 hydrometric stations and 491 years of flow data affected by hydropeaking, a method was developed to identify hydropeaks, essentially defined as variations with a rate of change greater than the maximum natural value computed using the formulas. A synthetic indicator differentiating five levels of hydrological alteration was developed using linear discriminant analysis based on five parameters characterizing hydropeaking regimes. Examples show that this indicator is sensitive to changes in the management of hydroelectric facilities and provides information on the spatial and temporal evolutions in hydropeaking regimes, including the progressive attenuation during downstream propagation.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An indicator to characterize hydrological alteration due to hydropeaking\",\"authors\":\"D. Courret, P. Baran, M. Larinier\",\"doi\":\"10.1080/24705357.2020.1871307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydropeaking by hydroelectric facilities generates sudden changes in river flows and can affect the composition, abundance and structure of fish and invertebrate populations over long distances. To assess the level of hydrological alteration, as a factor of risk of biological impacts, a synthetic indicator was developed. Based on the analysis of 97 hydrometric stations and 1575 years of unaltered flow data, rates of change in flow were calculated. Formulas representing the fastest natural variations, depending on the mean stream flow, the type of variation (increase or decrease) and the range of variation were established. Based on the analysis of 80 hydrometric stations and 491 years of flow data affected by hydropeaking, a method was developed to identify hydropeaks, essentially defined as variations with a rate of change greater than the maximum natural value computed using the formulas. A synthetic indicator differentiating five levels of hydrological alteration was developed using linear discriminant analysis based on five parameters characterizing hydropeaking regimes. Examples show that this indicator is sensitive to changes in the management of hydroelectric facilities and provides information on the spatial and temporal evolutions in hydropeaking regimes, including the progressive attenuation during downstream propagation.\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2020.1871307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2020.1871307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

水力发电设施的调峰会引起河流流量的突然变化,并可能影响远距离鱼类和无脊椎动物种群的组成、丰度和结构。为了评估作为生物影响风险因素的水文变化水平,开发了一个综合指标。基于对97个水文站和1575年不变流量资料的分析,计算了流量变化率。根据平均流量、变化类型(增加或减少)和变化范围,建立了代表最快自然变化的公式。在分析了80个水文站和491年受水峰影响的流量数据的基础上,提出了一种识别水峰的方法,水峰的基本定义是变化率大于使用公式计算的最大自然值的变化。利用线性判别分析方法,建立了区分水文变化5个层次的综合指标。实例表明,该指标对水电设施管理的变化很敏感,并提供了水电峰值制度时空演变的信息,包括下游传播过程中的逐渐衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An indicator to characterize hydrological alteration due to hydropeaking
Abstract Hydropeaking by hydroelectric facilities generates sudden changes in river flows and can affect the composition, abundance and structure of fish and invertebrate populations over long distances. To assess the level of hydrological alteration, as a factor of risk of biological impacts, a synthetic indicator was developed. Based on the analysis of 97 hydrometric stations and 1575 years of unaltered flow data, rates of change in flow were calculated. Formulas representing the fastest natural variations, depending on the mean stream flow, the type of variation (increase or decrease) and the range of variation were established. Based on the analysis of 80 hydrometric stations and 491 years of flow data affected by hydropeaking, a method was developed to identify hydropeaks, essentially defined as variations with a rate of change greater than the maximum natural value computed using the formulas. A synthetic indicator differentiating five levels of hydrological alteration was developed using linear discriminant analysis based on five parameters characterizing hydropeaking regimes. Examples show that this indicator is sensitive to changes in the management of hydroelectric facilities and provides information on the spatial and temporal evolutions in hydropeaking regimes, including the progressive attenuation during downstream propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Fish in the fast lane: the stressful consequences of speeding through a flume Evaluating hydrodynamics and implications to sediment transport for tidal restoration at Swan Cove Pool, Virginia Potential for juvenile freshwater mussels to settle onto riverbeds from field investigation The influence of channel morphology and hydraulic complexity on larval pallid sturgeon ( Scaphirhynchus albus ) drift and dispersal dynamics in the Fort Peck Segment, Upper Missouri River: insights from particle tracking simulations Limiting downstream dispersal of invasive carp egg surrogates using a laboratory-scale oblique bubble screen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1