{"title":"含氟芳族聚醚的动态力学行为","authors":"A. A. Goodwin, F. Mercer","doi":"10.1002/(SICI)1099-0488(19970915)35:12<1963::AID-POLB11>3.0.CO;2-#","DOIUrl":null,"url":null,"abstract":"The relaxation behavior of six fluorinated aromatic poly( ethers ) was investigated using dynamic mechanical analysis. The glass transition temperature was found to increase as the size and rigidity of linking groups increased and varied between 168°C for a dimethyl linking group and 300°C for a bicyclic benzoate ether-linking group. For the α-relaxation the steepness of time/temperature plots and broadness of the loss curves could be qualitatively correlated with chemical structure in a manner predicted by the coupling model of relaxation. Well-separated sub-T g transitions were also observed, as a shoulder on the low temperature side of the α-peak, and as a broad, low loss transition around -100°C. The higher temperature process was similar to the structural relaxation often found in quenched glassy polymers, while the position, intensity, and breadth of the subambient process was sensitive to chemical structure.","PeriodicalId":16853,"journal":{"name":"Journal of Polymer Science. Part B, Polymer Physics","volume":"94 1","pages":"1963-1971"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dynamic mechanical behavior of fluorinated aromatic poly(ethers)\",\"authors\":\"A. A. Goodwin, F. Mercer\",\"doi\":\"10.1002/(SICI)1099-0488(19970915)35:12<1963::AID-POLB11>3.0.CO;2-#\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relaxation behavior of six fluorinated aromatic poly( ethers ) was investigated using dynamic mechanical analysis. The glass transition temperature was found to increase as the size and rigidity of linking groups increased and varied between 168°C for a dimethyl linking group and 300°C for a bicyclic benzoate ether-linking group. For the α-relaxation the steepness of time/temperature plots and broadness of the loss curves could be qualitatively correlated with chemical structure in a manner predicted by the coupling model of relaxation. Well-separated sub-T g transitions were also observed, as a shoulder on the low temperature side of the α-peak, and as a broad, low loss transition around -100°C. The higher temperature process was similar to the structural relaxation often found in quenched glassy polymers, while the position, intensity, and breadth of the subambient process was sensitive to chemical structure.\",\"PeriodicalId\":16853,\"journal\":{\"name\":\"Journal of Polymer Science. Part B, Polymer Physics\",\"volume\":\"94 1\",\"pages\":\"1963-1971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science. Part B, Polymer Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1099-0488(19970915)35:12<1963::AID-POLB11>3.0.CO;2-#\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science. Part B, Polymer Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-0488(19970915)35:12<1963::AID-POLB11>3.0.CO;2-#","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Dynamic mechanical behavior of fluorinated aromatic poly(ethers)
The relaxation behavior of six fluorinated aromatic poly( ethers ) was investigated using dynamic mechanical analysis. The glass transition temperature was found to increase as the size and rigidity of linking groups increased and varied between 168°C for a dimethyl linking group and 300°C for a bicyclic benzoate ether-linking group. For the α-relaxation the steepness of time/temperature plots and broadness of the loss curves could be qualitatively correlated with chemical structure in a manner predicted by the coupling model of relaxation. Well-separated sub-T g transitions were also observed, as a shoulder on the low temperature side of the α-peak, and as a broad, low loss transition around -100°C. The higher temperature process was similar to the structural relaxation often found in quenched glassy polymers, while the position, intensity, and breadth of the subambient process was sensitive to chemical structure.
期刊介绍:
Since its launch in 1946 by P. M. Doty, H. Mark, and C.C. Price, the Journal of Polymer Science has provided a continuous forum for the dissemination of thoroughly peer-reviewed, fundamental, international research into the preparation and properties of macromolecules.
From January 2020, the Journal of Polymer Science, Part A: Polymer Chemistry and Journal of Polymer Science, Part B: Polymer Physics will be published as one journal, the Journal of Polymer Science. The merged journal will reflect the nature of today''s polymer science research, with physics and chemistry of polymer systems at the heart of the scope.
You can continue looking forward to an exciting mix of comprehensive reviews, visionary insights, high-impact communications, and full papers that represent the rapid multidisciplinary developments in polymer science.
Our editorial team consists of a mix of well-known academic editors and full-time professional editors who ensure fast, professional peer review of your contribution. After publication, our team will work to ensure that your paper receives the recognition it deserves by your peers and the broader scientific community.