纳米粒子薄膜中电子和空穴输运的分层建模:从从头算到蒙特卡罗

G. Zimányi, M. Voros, I. Carbone, S. Carter
{"title":"纳米粒子薄膜中电子和空穴输运的分层建模:从从头算到蒙特卡罗","authors":"G. Zimányi, M. Voros, I. Carbone, S. Carter","doi":"10.1109/PVSC.2014.6925113","DOIUrl":null,"url":null,"abstract":"Nanoparticle solar cells show the promise of enhancing the efficiency of solar cells over the Shockley-Queisser limit due to the quantum-confinement-enhanced charge multiplication process. A fundamental challenge of nanoparticle solar cells, however, is that the same quantum confinement that enhances charge multiplication also tends to localize the carriers and thus hinders charge transport. To create a roadmap for overcoming this challenge, we developed a multi-scale transport modeling scheme that starts with ab initio modeling of individual nanoparticles, continues with extracting a few summary parameters that best characterize the physics of these nanoparticles, such as charging energies and size dependent energy levels, and finally feeds this information into a kinetic Monte Carlo hopping transport framework to simulate electron and hole transport across realistically modeled nanoparticle films and devices. We demonstrate the power of this hierarchical modeling by exploring the carrier mobilities of PbSe nanoparticle films as a function of composition, disorder and temperature, where comparison of our results with experiments is possible.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"49 1","pages":"1124-1126"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical modeling of electron and hole transport in nanoparticle thin films: From ab initio to Monte Carlo\",\"authors\":\"G. Zimányi, M. Voros, I. Carbone, S. Carter\",\"doi\":\"10.1109/PVSC.2014.6925113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticle solar cells show the promise of enhancing the efficiency of solar cells over the Shockley-Queisser limit due to the quantum-confinement-enhanced charge multiplication process. A fundamental challenge of nanoparticle solar cells, however, is that the same quantum confinement that enhances charge multiplication also tends to localize the carriers and thus hinders charge transport. To create a roadmap for overcoming this challenge, we developed a multi-scale transport modeling scheme that starts with ab initio modeling of individual nanoparticles, continues with extracting a few summary parameters that best characterize the physics of these nanoparticles, such as charging energies and size dependent energy levels, and finally feeds this information into a kinetic Monte Carlo hopping transport framework to simulate electron and hole transport across realistically modeled nanoparticle films and devices. We demonstrate the power of this hierarchical modeling by exploring the carrier mobilities of PbSe nanoparticle films as a function of composition, disorder and temperature, where comparison of our results with experiments is possible.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"49 1\",\"pages\":\"1124-1126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于量子约束增强的电荷倍增过程,纳米粒子太阳能电池显示出提高太阳能电池效率超过Shockley-Queisser极限的希望。然而,纳米粒子太阳能电池的一个基本挑战是,增强电荷倍增的量子限制也倾向于使载流子局部化,从而阻碍电荷传输。为了创建克服这一挑战的路线图,我们开发了一个多尺度输运建模方案,该方案从单个纳米粒子的从头开始建模,继续提取一些最能表征这些纳米粒子物理特性的摘要参数,如充电能量和尺寸相关的能级,最后将这些信息输入到动态蒙特卡罗跳跃输运框架中,以模拟电子和空穴在真实模拟的纳米颗粒薄膜和器件之间的输运。我们通过探索PbSe纳米颗粒薄膜的载流子迁移率作为成分、无序性和温度的函数来证明这种分层建模的力量,其中我们的结果与实验的比较是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical modeling of electron and hole transport in nanoparticle thin films: From ab initio to Monte Carlo
Nanoparticle solar cells show the promise of enhancing the efficiency of solar cells over the Shockley-Queisser limit due to the quantum-confinement-enhanced charge multiplication process. A fundamental challenge of nanoparticle solar cells, however, is that the same quantum confinement that enhances charge multiplication also tends to localize the carriers and thus hinders charge transport. To create a roadmap for overcoming this challenge, we developed a multi-scale transport modeling scheme that starts with ab initio modeling of individual nanoparticles, continues with extracting a few summary parameters that best characterize the physics of these nanoparticles, such as charging energies and size dependent energy levels, and finally feeds this information into a kinetic Monte Carlo hopping transport framework to simulate electron and hole transport across realistically modeled nanoparticle films and devices. We demonstrate the power of this hierarchical modeling by exploring the carrier mobilities of PbSe nanoparticle films as a function of composition, disorder and temperature, where comparison of our results with experiments is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid characterization of extended defects in III–V/Si by electron channeling contrast imaging Transport modeling of InGaN/GaN multiple quantum well solar cells Integration of PV into the energy system: Challenges and measures for generation and load management Determination of a minimum soiling level to affect photovoltaic devices Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1