{"title":"基于桩内热盘管的冻土热稳定研究","authors":"A. Lavrik, G. Buslaev, M. Dvoinikov","doi":"10.28991/cej-2023-09-04-013","DOIUrl":null,"url":null,"abstract":"The article deals with the issue of thermal stabilization of soils to preserve the stability of pile foundations in permafrost conditions. The purpose of the work is to develop a technology for year-round freezing of soils by supplying coolant cooled by a refrigeration machine to thermal elements placed inside piles. In this work, the temperature regime of the system \"pile foundation – soil\" in the stationary formulation of the problem was simulated, and the influence of the depth of placement of thermal elements inside the piles on the soil temperature was investigated. The simulation was performed in the COMSOL software environment, taking into account the heat transfer due to thermal conduction and convection. In the presented model, a platform is fixed on piles, and a heat source is placed on the platform. It is found that an area of thawed soil has formed on the leeward side of the pile foundation. It is concluded that, under certain conditions, deep thermal elements for freezing or keeping the soil frozen should be placed at different depths. Thus, under given conditions, a greater depth of the thermal element placement in the pile, closest to the soil thawing zone, allows to reduce the surface temperature of the pile below ground level and, therefore, increase its bearing capacity. The authors also propose an original unit for soil thermostabilization based on the absorption cooling machine, which can operate at the expense of thermal energy generated by technological sources located on the platform. Doi: 10.28991/CEJ-2023-09-04-013 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Stabilization of Permafrost Using Thermal Coils Inside Foundation Piles\",\"authors\":\"A. Lavrik, G. Buslaev, M. Dvoinikov\",\"doi\":\"10.28991/cej-2023-09-04-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the issue of thermal stabilization of soils to preserve the stability of pile foundations in permafrost conditions. The purpose of the work is to develop a technology for year-round freezing of soils by supplying coolant cooled by a refrigeration machine to thermal elements placed inside piles. In this work, the temperature regime of the system \\\"pile foundation – soil\\\" in the stationary formulation of the problem was simulated, and the influence of the depth of placement of thermal elements inside the piles on the soil temperature was investigated. The simulation was performed in the COMSOL software environment, taking into account the heat transfer due to thermal conduction and convection. In the presented model, a platform is fixed on piles, and a heat source is placed on the platform. It is found that an area of thawed soil has formed on the leeward side of the pile foundation. It is concluded that, under certain conditions, deep thermal elements for freezing or keeping the soil frozen should be placed at different depths. Thus, under given conditions, a greater depth of the thermal element placement in the pile, closest to the soil thawing zone, allows to reduce the surface temperature of the pile below ground level and, therefore, increase its bearing capacity. The authors also propose an original unit for soil thermostabilization based on the absorption cooling machine, which can operate at the expense of thermal energy generated by technological sources located on the platform. Doi: 10.28991/CEJ-2023-09-04-013 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-04-013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-04-013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Thermal Stabilization of Permafrost Using Thermal Coils Inside Foundation Piles
The article deals with the issue of thermal stabilization of soils to preserve the stability of pile foundations in permafrost conditions. The purpose of the work is to develop a technology for year-round freezing of soils by supplying coolant cooled by a refrigeration machine to thermal elements placed inside piles. In this work, the temperature regime of the system "pile foundation – soil" in the stationary formulation of the problem was simulated, and the influence of the depth of placement of thermal elements inside the piles on the soil temperature was investigated. The simulation was performed in the COMSOL software environment, taking into account the heat transfer due to thermal conduction and convection. In the presented model, a platform is fixed on piles, and a heat source is placed on the platform. It is found that an area of thawed soil has formed on the leeward side of the pile foundation. It is concluded that, under certain conditions, deep thermal elements for freezing or keeping the soil frozen should be placed at different depths. Thus, under given conditions, a greater depth of the thermal element placement in the pile, closest to the soil thawing zone, allows to reduce the surface temperature of the pile below ground level and, therefore, increase its bearing capacity. The authors also propose an original unit for soil thermostabilization based on the absorption cooling machine, which can operate at the expense of thermal energy generated by technological sources located on the platform. Doi: 10.28991/CEJ-2023-09-04-013 Full Text: PDF
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.