Chengji Mi, Yang Hai, Fazhan Wu, Liang Luo, Zejun Chen, Youhua Fan, Di Kang
{"title":"油茶采摘机滑块托盘模糊多目标拓扑优化","authors":"Chengji Mi, Yang Hai, Fazhan Wu, Liang Luo, Zejun Chen, Youhua Fan, Di Kang","doi":"10.17559/tv-20230111000218","DOIUrl":null,"url":null,"abstract":". In order to improve the dynamic characteristics of the slider pallet in the camellia fruit picking machine under the traditional empirical design and to lighten the weight, a fuzzy multi-objective topology optimization design method was proposed. In this paper, a static and dynamic topology optimization mathematical model was constructed by the compromise programming method, and the weight coefficients of each sub-objective were dynamically assigned by the fuzzy satisfaction variable weight coefficient method, and then the fuzzy multi-objective topology optimization design of the slider pallet for bending condition, bending-torsional complex condition, inertia condition and the first three orders of dynamic frequency was performed. The optimization results showed that the weight of the optimized slider pallet was reduced by 19.4%, and the first-order modal frequency was increased by 5.0%, second order modal frequency increased by 6.6%, third order modal frequency increased by 8.2%; the maximum deformation and maximum stress were increased, but still met the design requirements.","PeriodicalId":49443,"journal":{"name":"Tehnicki Vjesnik-Technical Gazette","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Multi-Objectives Topology Optimization of Slider Pallet in the Picking Machine of Camellia Fruit\",\"authors\":\"Chengji Mi, Yang Hai, Fazhan Wu, Liang Luo, Zejun Chen, Youhua Fan, Di Kang\",\"doi\":\"10.17559/tv-20230111000218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In order to improve the dynamic characteristics of the slider pallet in the camellia fruit picking machine under the traditional empirical design and to lighten the weight, a fuzzy multi-objective topology optimization design method was proposed. In this paper, a static and dynamic topology optimization mathematical model was constructed by the compromise programming method, and the weight coefficients of each sub-objective were dynamically assigned by the fuzzy satisfaction variable weight coefficient method, and then the fuzzy multi-objective topology optimization design of the slider pallet for bending condition, bending-torsional complex condition, inertia condition and the first three orders of dynamic frequency was performed. The optimization results showed that the weight of the optimized slider pallet was reduced by 19.4%, and the first-order modal frequency was increased by 5.0%, second order modal frequency increased by 6.6%, third order modal frequency increased by 8.2%; the maximum deformation and maximum stress were increased, but still met the design requirements.\",\"PeriodicalId\":49443,\"journal\":{\"name\":\"Tehnicki Vjesnik-Technical Gazette\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki Vjesnik-Technical Gazette\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230111000218\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki Vjesnik-Technical Gazette","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17559/tv-20230111000218","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fuzzy Multi-Objectives Topology Optimization of Slider Pallet in the Picking Machine of Camellia Fruit
. In order to improve the dynamic characteristics of the slider pallet in the camellia fruit picking machine under the traditional empirical design and to lighten the weight, a fuzzy multi-objective topology optimization design method was proposed. In this paper, a static and dynamic topology optimization mathematical model was constructed by the compromise programming method, and the weight coefficients of each sub-objective were dynamically assigned by the fuzzy satisfaction variable weight coefficient method, and then the fuzzy multi-objective topology optimization design of the slider pallet for bending condition, bending-torsional complex condition, inertia condition and the first three orders of dynamic frequency was performed. The optimization results showed that the weight of the optimized slider pallet was reduced by 19.4%, and the first-order modal frequency was increased by 5.0%, second order modal frequency increased by 6.6%, third order modal frequency increased by 8.2%; the maximum deformation and maximum stress were increased, but still met the design requirements.
期刊介绍:
The journal TEHNIČKI VJESNIK - TECHNICAL GAZETTE publishes scientific and professional papers in the area of technical sciences (mostly from mechanical, electrical and civil engineering, and also from their boundary areas).
All articles have undergone peer review and upon acceptance are permanently free of all restrictions on access, for everyone to read and download.
For all articles authors will be asked to pay a publication fee prior to the article appearing in the journal. However, this fee only to be paid after the article has been positively reviewed and accepted for publishing. All details can be seen at http://www.tehnicki-vjesnik.com/web/public/page
First year of publication: 1994
Frequency (annually): 6