Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, R. Zhu, Jun Xu
{"title":"用于等离子体增强光谱和生物传感的间隙可调谐纳米天线的精密制造","authors":"Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, R. Zhu, Jun Xu","doi":"10.1109/MEMS46641.2020.9056322","DOIUrl":null,"url":null,"abstract":"This paper reports an arrayed nanometer precision gap-tunable bowtie nanoantennas fabricated by focused helium ion beam (HIB) milling. Plasmonic resonance is excited and tightly localized inside the nanogaps of the bowtie nanoantennas. Both numerical simulations and cathodoluminescence (CL) measurements manifest that the plasmon coupling resonance is significantly enhanced by decreasing the nanoantennas' gap width down to sub-10 nm scale. The stronger plasmon resonance also leads to a remarkable improvement of the spectral sensitivity to the surrounding media changes, which can be used to detect streptavidin with the concentration down to 100 ng/mL by simply monitoring the spectral shift.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"99 1","pages":"1179-1182"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Fabrication of Gap-Tunable Nanoantennas for Plasmon-Enhanced Spectroscopy and Biosensing\",\"authors\":\"Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, R. Zhu, Jun Xu\",\"doi\":\"10.1109/MEMS46641.2020.9056322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an arrayed nanometer precision gap-tunable bowtie nanoantennas fabricated by focused helium ion beam (HIB) milling. Plasmonic resonance is excited and tightly localized inside the nanogaps of the bowtie nanoantennas. Both numerical simulations and cathodoluminescence (CL) measurements manifest that the plasmon coupling resonance is significantly enhanced by decreasing the nanoantennas' gap width down to sub-10 nm scale. The stronger plasmon resonance also leads to a remarkable improvement of the spectral sensitivity to the surrounding media changes, which can be used to detect streptavidin with the concentration down to 100 ng/mL by simply monitoring the spectral shift.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"99 1\",\"pages\":\"1179-1182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precise Fabrication of Gap-Tunable Nanoantennas for Plasmon-Enhanced Spectroscopy and Biosensing
This paper reports an arrayed nanometer precision gap-tunable bowtie nanoantennas fabricated by focused helium ion beam (HIB) milling. Plasmonic resonance is excited and tightly localized inside the nanogaps of the bowtie nanoantennas. Both numerical simulations and cathodoluminescence (CL) measurements manifest that the plasmon coupling resonance is significantly enhanced by decreasing the nanoantennas' gap width down to sub-10 nm scale. The stronger plasmon resonance also leads to a remarkable improvement of the spectral sensitivity to the surrounding media changes, which can be used to detect streptavidin with the concentration down to 100 ng/mL by simply monitoring the spectral shift.