{"title":"固定化氧化亚铁硫杆菌生物化学联合氧化硫酸亚铁的研究","authors":"M. Nemati, C. Webb","doi":"10.1002/(SICI)1097-4660(199906)74:6<562::AID-JCTB75>3.0.CO;2-#","DOIUrl":null,"url":null,"abstract":"Thiobacillus ferrooxidans immobilised in biomass support particles with activated carbon coating were used in a packed-bed bioreactor to study the combined effects of chemical and biological catalysis on the oxidation of ferrous iron. The effect of ferrous iron concentration (in the range 5–30 kg m−3) and of its volumetric loading on the kinetics of reaction were investigated. With low concentrations of ferrous iron, 5–10 kg m−3, the combined catalysis did not offer a significant advantage to oxidation of ferrous iron and the kinetics of reaction were slightly faster than those achieved with just the biological catalyst. With ferrous iron at a concentration of 20 kg m−3, the combination of chemical and biological catalysis resulted in a remarkable enhancement of the reaction rate. The maximum oxidation rate of ferrous iron in the presence of combined catalysts, 21.9 kg m−3 h−1, was twice as high as that achieved with just the biological catalyst. \n \n \n \n© 1999 Society of Chemical Industry","PeriodicalId":15303,"journal":{"name":"Journal of Chemical Technology & Biotechnology","volume":"44 1","pages":"562-570"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Combined biological and chemical oxidation of ferrous sulfate using immobilised Thiobacillus ferrooxidans\",\"authors\":\"M. Nemati, C. Webb\",\"doi\":\"10.1002/(SICI)1097-4660(199906)74:6<562::AID-JCTB75>3.0.CO;2-#\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thiobacillus ferrooxidans immobilised in biomass support particles with activated carbon coating were used in a packed-bed bioreactor to study the combined effects of chemical and biological catalysis on the oxidation of ferrous iron. The effect of ferrous iron concentration (in the range 5–30 kg m−3) and of its volumetric loading on the kinetics of reaction were investigated. With low concentrations of ferrous iron, 5–10 kg m−3, the combined catalysis did not offer a significant advantage to oxidation of ferrous iron and the kinetics of reaction were slightly faster than those achieved with just the biological catalyst. With ferrous iron at a concentration of 20 kg m−3, the combination of chemical and biological catalysis resulted in a remarkable enhancement of the reaction rate. The maximum oxidation rate of ferrous iron in the presence of combined catalysts, 21.9 kg m−3 h−1, was twice as high as that achieved with just the biological catalyst. \\n \\n \\n \\n© 1999 Society of Chemical Industry\",\"PeriodicalId\":15303,\"journal\":{\"name\":\"Journal of Chemical Technology & Biotechnology\",\"volume\":\"44 1\",\"pages\":\"562-570\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<562::AID-JCTB75>3.0.CO;2-#\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<562::AID-JCTB75>3.0.CO;2-#","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Combined biological and chemical oxidation of ferrous sulfate using immobilised Thiobacillus ferrooxidans
Thiobacillus ferrooxidans immobilised in biomass support particles with activated carbon coating were used in a packed-bed bioreactor to study the combined effects of chemical and biological catalysis on the oxidation of ferrous iron. The effect of ferrous iron concentration (in the range 5–30 kg m−3) and of its volumetric loading on the kinetics of reaction were investigated. With low concentrations of ferrous iron, 5–10 kg m−3, the combined catalysis did not offer a significant advantage to oxidation of ferrous iron and the kinetics of reaction were slightly faster than those achieved with just the biological catalyst. With ferrous iron at a concentration of 20 kg m−3, the combination of chemical and biological catalysis resulted in a remarkable enhancement of the reaction rate. The maximum oxidation rate of ferrous iron in the presence of combined catalysts, 21.9 kg m−3 h−1, was twice as high as that achieved with just the biological catalyst.
© 1999 Society of Chemical Industry