利用程序综合和项重写优化同态求值电路

Dongkwon Lee, Woosuk Lee, Hakjoo Oh, K. Yi
{"title":"利用程序综合和项重写优化同态求值电路","authors":"Dongkwon Lee, Woosuk Lee, Hakjoo Oh, K. Yi","doi":"10.1145/3385412.3385996","DOIUrl":null,"url":null,"abstract":"We present a new and general method for optimizing homomorphic evaluation circuits. Although fully homomorphic encryption (FHE) holds the promise of enabling safe and secure third party computation, building FHE applications has been challenging due to their high computational costs. Domain-specific optimizations require a great deal of expertise on the underlying FHE schemes, and FHE compilers that aims to lower the hurdle, generate outcomes that are typically sub-optimal as they rely on manually-developed optimization rules. In this paper, based on the prior work of FHE compilers, we propose a method for automatically learning and using optimization rules for FHE circuits. Our method focuses on reducing the maximum multiplicative depth, the decisive performance bottleneck, of FHE circuits by combining program synthesis and term rewriting. It first uses program synthesis to learn equivalences of small circuits as rewrite rules from a set of training circuits. Then, we perform term rewriting on the input circuit to obtain a new circuit that has lower multiplicative depth. Our rewriting method maximally generalizes the learned rules based on the equational matching and its soundness and termination properties are formally proven. Experimental results show that our method generates circuits that can be homomorphically evaluated 1.18x – 3.71x faster (with the geometric mean of 2.05x) than the state-of-the-art method. Our method is also orthogonal to existing domain-specific optimizations.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Optimizing homomorphic evaluation circuits by program synthesis and term rewriting\",\"authors\":\"Dongkwon Lee, Woosuk Lee, Hakjoo Oh, K. Yi\",\"doi\":\"10.1145/3385412.3385996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new and general method for optimizing homomorphic evaluation circuits. Although fully homomorphic encryption (FHE) holds the promise of enabling safe and secure third party computation, building FHE applications has been challenging due to their high computational costs. Domain-specific optimizations require a great deal of expertise on the underlying FHE schemes, and FHE compilers that aims to lower the hurdle, generate outcomes that are typically sub-optimal as they rely on manually-developed optimization rules. In this paper, based on the prior work of FHE compilers, we propose a method for automatically learning and using optimization rules for FHE circuits. Our method focuses on reducing the maximum multiplicative depth, the decisive performance bottleneck, of FHE circuits by combining program synthesis and term rewriting. It first uses program synthesis to learn equivalences of small circuits as rewrite rules from a set of training circuits. Then, we perform term rewriting on the input circuit to obtain a new circuit that has lower multiplicative depth. Our rewriting method maximally generalizes the learned rules based on the equational matching and its soundness and termination properties are formally proven. Experimental results show that our method generates circuits that can be homomorphically evaluated 1.18x – 3.71x faster (with the geometric mean of 2.05x) than the state-of-the-art method. Our method is also orthogonal to existing domain-specific optimizations.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3385996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3385996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种新的通用的优化同态求值电路的方法。尽管完全同态加密(FHE)有望实现安全可靠的第三方计算,但由于其高计算成本,构建FHE应用程序一直具有挑战性。特定领域的优化需要大量关于底层FHE方案的专业知识,而FHE编译器的目标是降低障碍,生成的结果通常不是最优的,因为它们依赖于手动开发的优化规则。本文在FHE编译器已有工作的基础上,提出了一种FHE电路自动学习和使用优化规则的方法。我们的方法主要通过结合程序合成和项重写来降低FHE电路的最大乘法深度这一决定性的性能瓶颈。它首先使用程序合成从一组训练电路中学习等效的小电路作为重写规则。然后,我们对输入电路进行项重写,以获得具有更低乘法深度的新电路。我们的重写方法最大限度地推广了基于等式匹配的学习规则,并正式证明了它的可靠性和终止性。实验结果表明,我们的方法产生的电路同态评估速度比现有方法快1.18 - 3.71倍(几何平均值为2.05倍)。我们的方法也与现有的特定领域优化是正交的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing homomorphic evaluation circuits by program synthesis and term rewriting
We present a new and general method for optimizing homomorphic evaluation circuits. Although fully homomorphic encryption (FHE) holds the promise of enabling safe and secure third party computation, building FHE applications has been challenging due to their high computational costs. Domain-specific optimizations require a great deal of expertise on the underlying FHE schemes, and FHE compilers that aims to lower the hurdle, generate outcomes that are typically sub-optimal as they rely on manually-developed optimization rules. In this paper, based on the prior work of FHE compilers, we propose a method for automatically learning and using optimization rules for FHE circuits. Our method focuses on reducing the maximum multiplicative depth, the decisive performance bottleneck, of FHE circuits by combining program synthesis and term rewriting. It first uses program synthesis to learn equivalences of small circuits as rewrite rules from a set of training circuits. Then, we perform term rewriting on the input circuit to obtain a new circuit that has lower multiplicative depth. Our rewriting method maximally generalizes the learned rules based on the equational matching and its soundness and termination properties are formally proven. Experimental results show that our method generates circuits that can be homomorphically evaluated 1.18x – 3.71x faster (with the geometric mean of 2.05x) than the state-of-the-art method. Our method is also orthogonal to existing domain-specific optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Type error feedback via analytic program repair Inductive sequentialization of asynchronous programs Decidable verification under a causally consistent shared memory SympleGraph: distributed graph processing with precise loop-carried dependency guarantee Debug information validation for optimized code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1