Yang Li, J. Tong, C. Bian, Hanpeng Dong, Jizhou Sun, S. Xia
{"title":"基于Android设备的便携式水中铜离子检测系统研究","authors":"Yang Li, J. Tong, C. Bian, Hanpeng Dong, Jizhou Sun, S. Xia","doi":"10.1109/SENSORS43011.2019.8956804","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a portable electrochemical sensor system for the detection of copper ions (Cu2+) in water samples. The hardware of the sensor is based on a customized electrochemical electrode and a miniaturized detecting circuit module. An application (APP) running on an Android PAD is developed to functionalize the hardware into a sensor system. The electrochemical electrode is configured with a gold disk working-electrode (WE), a platinum disk counter-electrode (CE) and a commercial Ag/AgCl reference electrode (RE). The detecting circuit module use an ARM chip to realize the key operations, such as precise control of multichannel potentiostat and weak current detection, in electrochemical detection based on anodic stripping voltammetric method. The APP is used to manage the Bluetooth wireless communication between the sensor and the Android PAD, and implement data management and graphic display of the detecting results. The developed sensor system was verified with standard copper salt samples. The testing result shows that it performes high sensitivity (0.0075 μA/μgL−1) to Cu2+ within the concentrations ranging from 0 μg/L to 400 μg/L by the square wave voltammetry (SWV). The standard substance tests also exhibit a good precision of the sensor system for simultaneous determination of Cu2+ and Pd2+, which indicates it can also be used to implement multi-parameters detection in water quality monitoring.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"143 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Portable Sensor System for Determination of Copper Ions in Waters with Android Device\",\"authors\":\"Yang Li, J. Tong, C. Bian, Hanpeng Dong, Jizhou Sun, S. Xia\",\"doi\":\"10.1109/SENSORS43011.2019.8956804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a portable electrochemical sensor system for the detection of copper ions (Cu2+) in water samples. The hardware of the sensor is based on a customized electrochemical electrode and a miniaturized detecting circuit module. An application (APP) running on an Android PAD is developed to functionalize the hardware into a sensor system. The electrochemical electrode is configured with a gold disk working-electrode (WE), a platinum disk counter-electrode (CE) and a commercial Ag/AgCl reference electrode (RE). The detecting circuit module use an ARM chip to realize the key operations, such as precise control of multichannel potentiostat and weak current detection, in electrochemical detection based on anodic stripping voltammetric method. The APP is used to manage the Bluetooth wireless communication between the sensor and the Android PAD, and implement data management and graphic display of the detecting results. The developed sensor system was verified with standard copper salt samples. The testing result shows that it performes high sensitivity (0.0075 μA/μgL−1) to Cu2+ within the concentrations ranging from 0 μg/L to 400 μg/L by the square wave voltammetry (SWV). The standard substance tests also exhibit a good precision of the sensor system for simultaneous determination of Cu2+ and Pd2+, which indicates it can also be used to implement multi-parameters detection in water quality monitoring.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"143 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Portable Sensor System for Determination of Copper Ions in Waters with Android Device
This paper demonstrates a portable electrochemical sensor system for the detection of copper ions (Cu2+) in water samples. The hardware of the sensor is based on a customized electrochemical electrode and a miniaturized detecting circuit module. An application (APP) running on an Android PAD is developed to functionalize the hardware into a sensor system. The electrochemical electrode is configured with a gold disk working-electrode (WE), a platinum disk counter-electrode (CE) and a commercial Ag/AgCl reference electrode (RE). The detecting circuit module use an ARM chip to realize the key operations, such as precise control of multichannel potentiostat and weak current detection, in electrochemical detection based on anodic stripping voltammetric method. The APP is used to manage the Bluetooth wireless communication between the sensor and the Android PAD, and implement data management and graphic display of the detecting results. The developed sensor system was verified with standard copper salt samples. The testing result shows that it performes high sensitivity (0.0075 μA/μgL−1) to Cu2+ within the concentrations ranging from 0 μg/L to 400 μg/L by the square wave voltammetry (SWV). The standard substance tests also exhibit a good precision of the sensor system for simultaneous determination of Cu2+ and Pd2+, which indicates it can also be used to implement multi-parameters detection in water quality monitoring.