水泥微观结构:促进光催化

E. Cerro-Prada
{"title":"水泥微观结构:促进光催化","authors":"E. Cerro-Prada","doi":"10.5772/INTECHOPEN.74365","DOIUrl":null,"url":null,"abstract":"The singularities and the qualities of the hydrated cement microstructure have been identified by researchers as enhancers to promote photocatalytic processes, mediated by titanium dioxide, to create environment-friendly cement. In this chapter, we intend to expose the microstructural characteristics of cement and those aspects that make it possible for the promotion of photocatalytic activity. Within the inherent complexity of the cement microstructure, we describe a framework of two key elements in the microstructure of this material that affects the promotion of TiO 2 photocatalysis, to offer a more comprehensive view of the physical-chemical processes involved. These elements are: the porosity and the nanostructure of the C-S-H. This framework is also a starting point for future studies that seek to improve the photocatalytic response of titanium dioxide inserted in the cement matrix, as well as to provide implications for the application of photocatalytic cement technology in the construction materials industry.","PeriodicalId":100028,"journal":{"name":"Advanced Cement Based Materials","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cement Microstructure: Fostering Photocatalysis\",\"authors\":\"E. Cerro-Prada\",\"doi\":\"10.5772/INTECHOPEN.74365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The singularities and the qualities of the hydrated cement microstructure have been identified by researchers as enhancers to promote photocatalytic processes, mediated by titanium dioxide, to create environment-friendly cement. In this chapter, we intend to expose the microstructural characteristics of cement and those aspects that make it possible for the promotion of photocatalytic activity. Within the inherent complexity of the cement microstructure, we describe a framework of two key elements in the microstructure of this material that affects the promotion of TiO 2 photocatalysis, to offer a more comprehensive view of the physical-chemical processes involved. These elements are: the porosity and the nanostructure of the C-S-H. This framework is also a starting point for future studies that seek to improve the photocatalytic response of titanium dioxide inserted in the cement matrix, as well as to provide implications for the application of photocatalytic cement technology in the construction materials industry.\",\"PeriodicalId\":100028,\"journal\":{\"name\":\"Advanced Cement Based Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Cement Based Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Cement Based Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

水化水泥微观结构的奇异性和质量已被研究人员确定为促进二氧化钛介导的光催化过程的增强剂,以制造环保型水泥。在本章中,我们打算揭示水泥的微观结构特征和那些可能促进光催化活性的方面。在水泥微观结构固有的复杂性中,我们描述了这种材料微观结构中影响tio2光催化促进的两个关键元素的框架,以提供所涉及的物理化学过程的更全面的观点。这些因素是:孔隙率和碳硫合金的纳米结构。该框架也是未来研究的起点,旨在改善水泥基质中二氧化钛的光催化反应,并为光催化水泥技术在建筑材料行业的应用提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cement Microstructure: Fostering Photocatalysis
The singularities and the qualities of the hydrated cement microstructure have been identified by researchers as enhancers to promote photocatalytic processes, mediated by titanium dioxide, to create environment-friendly cement. In this chapter, we intend to expose the microstructural characteristics of cement and those aspects that make it possible for the promotion of photocatalytic activity. Within the inherent complexity of the cement microstructure, we describe a framework of two key elements in the microstructure of this material that affects the promotion of TiO 2 photocatalysis, to offer a more comprehensive view of the physical-chemical processes involved. These elements are: the porosity and the nanostructure of the C-S-H. This framework is also a starting point for future studies that seek to improve the photocatalytic response of titanium dioxide inserted in the cement matrix, as well as to provide implications for the application of photocatalytic cement technology in the construction materials industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water Sorption of Hardened Cement Pastes Cements for High-Temperature Geothermal Wells Calcium Phosphate Bone Cements Sorel Cements from Tunisian Natural Brines Alternative Stabilizer for Mud Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1