约束网络控制系统的事件触发滑模控制

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Facta Universitatis-Series Electronics and Energetics Pub Date : 2022-01-01 DOI:10.2298/fuee2204557s
A. Sarjaš, D. Gleich
{"title":"约束网络控制系统的事件触发滑模控制","authors":"A. Sarjaš, D. Gleich","doi":"10.2298/fuee2204557s","DOIUrl":null,"url":null,"abstract":"The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered sliding mode control for constrained networked control systems\",\"authors\":\"A. Sarjaš, D. Gleich\",\"doi\":\"10.2298/fuee2204557s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2204557s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2204557s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种约束网络反馈控制系统的非线性控制方法。控制器的实时执行是基于事件触发范式实现的。控制器设计采用非线性变结构。非线性方法是基于由系统状态定义的预定义滑动变量,并带有非线性切换函数。从滑动变量的演化角度分析了系统的稳定性。非线性控制器的事件触发操作是根据规定的触发规则进行的。滑动变量的稳定边界取决于预先选定的触发条件,触发条件的选择是对系统性能、网络约束和传输能力的权衡。事件触发方法的主要焦点是降低NFCS稳态行为下的网络资源利用率。所提出的方法保证了控制器执行的非零事件间时间,从而能够根据网络约束和实时系统性能对网络运行进行调度和优化。通过与经典时间触发方法的比较,证明了该方法的有效性。实际测量结果支持这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event-triggered sliding mode control for constrained networked control systems
The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Facta Universitatis-Series Electronics and Energetics
Facta Universitatis-Series Electronics and Energetics ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
16.70%
发文量
10
审稿时长
20 weeks
期刊最新文献
Machine learning assisted optimization and its application to hybrid dielectric resonator antenna design Performance of wearable circularly polarized antenna on different high frequency substrates for dual-band wireless applications Dual band MIMO antenna for LTE, 4G and sub-6 GHz 5G applications Discrete time quasi-sliding mode-based control of LCL grid inverters Performance analysis of FinFET based inverter, NAND and NOR circuits at 10 NM,7 NM and 5 NM node technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1