{"title":"约束网络控制系统的事件触发滑模控制","authors":"A. Sarjaš, D. Gleich","doi":"10.2298/fuee2204557s","DOIUrl":null,"url":null,"abstract":"The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered sliding mode control for constrained networked control systems\",\"authors\":\"A. Sarjaš, D. Gleich\",\"doi\":\"10.2298/fuee2204557s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.\",\"PeriodicalId\":44296,\"journal\":{\"name\":\"Facta Universitatis-Series Electronics and Energetics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Electronics and Energetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fuee2204557s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2204557s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Event-triggered sliding mode control for constrained networked control systems
The paper describes a Non-linear Control (ETNC) approach for constrained Networked Feedback Control Systems (NFCS). The real-time controller execution is implemented based on the Event-triggering paradigm. A nonlinear variable structure is used for the controller design. The nonlinear approach is based on the predefined sliding variable defined by the system states with a nonlinear switching function. The system's stability is analyzed regarding the evolution of the sliding variable. The Event-Triggered operation of the nonlinear controller is based on the prescribed triggering rule. The stability boundary of the sliding variable is subject to the preselected triggering condition, whose selection is a tradeoff of system performance, networks constraints and transmission capabilities. The main focus of the Event triggering approach is lowering network resources utilization in the steady-state behavior of the NFCS. The presented approach ensures a non-zero inter-event time of controller execution, which enables scheduling and optimization of the network operation regarding the network constraints and real-time system performance. The efficiency of the presented method is presented with a comparison of the classical time triggering approach. The real measurement supports the results.