{"title":"改进的单元间模拟模型,用于确定致密/页岩地层的最小混相压力","authors":"Hao Sun, H. Li","doi":"10.2516/ogst/2021031","DOIUrl":null,"url":null,"abstract":"A new oil–gas Minimum Miscibility Pressure (MMP) calculation algorithm is developed in this work based on the classic cell-to-cell simulation model. The proposed algorithm couples the effects of capillary pressure and confinement in the original cell-to-cell simulation model to predict the oil–gas MMPs in a confined space. Given that the original cell-to-cell algorithm relies on the volume predictions of the reservoir fluids in each cell, a volume-translated Peng-Robinson Equation of State (PR-EOS) is applied in this work for improved accuracy on volume calculations of the reservoir fluids. The robustness of the proposed algorithm is examined by performing the confined MMP calculations for four oil–gas systems. The tie-line length extrapolation method is used to determine the oil–gas MMP in confined space. The oil recovery factor calculated by the proposed MMP calculation algorithm is then used to validate the results. First, to achieve stable modeling results for all four examples, a total cell number of 500 is determined by examining the variations in the oil recovery as a function of cell number. Then, by calculating the oil recovery factor near the MMP region, it is found that the MMP determined by tie-line length method is slightly lower than the inflection point of the oil recovery curve. Through the case studies, the effects of temperature, pore radius, and injection gas impurity on the confined oil–gas MMP calculations are studied in detail. It is found that the oil–gas MMP is reduced in confined space and the degree of this reduction depends on the pore radius. For all the tested pore radii, the confined MMP first increases and then decreases with an increasing temperature. Furthermore, compared to pure carbon dioxide (CO2) injection, the addition of methane (CH4) in the injection gas increases the oil–gas MMP in confined nanopores. Therefore, it is recommended to control the content of CH4 in the injection gas in order to achieve a more efficient gas injection design.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A modified cell-to-cell simulation model to determine the minimum miscibility pressure in tight/shale formations\",\"authors\":\"Hao Sun, H. Li\",\"doi\":\"10.2516/ogst/2021031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new oil–gas Minimum Miscibility Pressure (MMP) calculation algorithm is developed in this work based on the classic cell-to-cell simulation model. The proposed algorithm couples the effects of capillary pressure and confinement in the original cell-to-cell simulation model to predict the oil–gas MMPs in a confined space. Given that the original cell-to-cell algorithm relies on the volume predictions of the reservoir fluids in each cell, a volume-translated Peng-Robinson Equation of State (PR-EOS) is applied in this work for improved accuracy on volume calculations of the reservoir fluids. The robustness of the proposed algorithm is examined by performing the confined MMP calculations for four oil–gas systems. The tie-line length extrapolation method is used to determine the oil–gas MMP in confined space. The oil recovery factor calculated by the proposed MMP calculation algorithm is then used to validate the results. First, to achieve stable modeling results for all four examples, a total cell number of 500 is determined by examining the variations in the oil recovery as a function of cell number. Then, by calculating the oil recovery factor near the MMP region, it is found that the MMP determined by tie-line length method is slightly lower than the inflection point of the oil recovery curve. Through the case studies, the effects of temperature, pore radius, and injection gas impurity on the confined oil–gas MMP calculations are studied in detail. It is found that the oil–gas MMP is reduced in confined space and the degree of this reduction depends on the pore radius. For all the tested pore radii, the confined MMP first increases and then decreases with an increasing temperature. Furthermore, compared to pure carbon dioxide (CO2) injection, the addition of methane (CH4) in the injection gas increases the oil–gas MMP in confined nanopores. Therefore, it is recommended to control the content of CH4 in the injection gas in order to achieve a more efficient gas injection design.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A modified cell-to-cell simulation model to determine the minimum miscibility pressure in tight/shale formations
A new oil–gas Minimum Miscibility Pressure (MMP) calculation algorithm is developed in this work based on the classic cell-to-cell simulation model. The proposed algorithm couples the effects of capillary pressure and confinement in the original cell-to-cell simulation model to predict the oil–gas MMPs in a confined space. Given that the original cell-to-cell algorithm relies on the volume predictions of the reservoir fluids in each cell, a volume-translated Peng-Robinson Equation of State (PR-EOS) is applied in this work for improved accuracy on volume calculations of the reservoir fluids. The robustness of the proposed algorithm is examined by performing the confined MMP calculations for four oil–gas systems. The tie-line length extrapolation method is used to determine the oil–gas MMP in confined space. The oil recovery factor calculated by the proposed MMP calculation algorithm is then used to validate the results. First, to achieve stable modeling results for all four examples, a total cell number of 500 is determined by examining the variations in the oil recovery as a function of cell number. Then, by calculating the oil recovery factor near the MMP region, it is found that the MMP determined by tie-line length method is slightly lower than the inflection point of the oil recovery curve. Through the case studies, the effects of temperature, pore radius, and injection gas impurity on the confined oil–gas MMP calculations are studied in detail. It is found that the oil–gas MMP is reduced in confined space and the degree of this reduction depends on the pore radius. For all the tested pore radii, the confined MMP first increases and then decreases with an increasing temperature. Furthermore, compared to pure carbon dioxide (CO2) injection, the addition of methane (CH4) in the injection gas increases the oil–gas MMP in confined nanopores. Therefore, it is recommended to control the content of CH4 in the injection gas in order to achieve a more efficient gas injection design.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.