朝着具有全波段纹理特征的光谱图像发展

A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne
{"title":"朝着具有全波段纹理特征的光谱图像发展","authors":"A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne","doi":"10.1109/ICIP.2014.7025142","DOIUrl":null,"url":null,"abstract":"Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Toward a full-band texture features for spectral images\",\"authors\":\"A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne\",\"doi\":\"10.1109/ICIP.2014.7025142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

面对越来越多的多光谱和高光谱图像采集,特别是在医疗和工业应用中,我们需要精确的特征来以计量的方式分析和评估内容复杂性。在本文中,我们探索了一种基于全波段和矢量处理的光谱图像纹理特征计算方法。为此,我们开发了一种使用距离函数的数学形态学专用方法。基于此,我们将经典数学形态学扩展到光谱图像。本文展示了该方法的科学构建和初步成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward a full-band texture features for spectral images
Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1