A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne
{"title":"朝着具有全波段纹理特征的光谱图像发展","authors":"A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne","doi":"10.1109/ICIP.2014.7025142","DOIUrl":null,"url":null,"abstract":"Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Toward a full-band texture features for spectral images\",\"authors\":\"A. Ledoux, N. Richard, A. Capelle-Laizé, H. Deborah, C. Fernandez-Maloigne\",\"doi\":\"10.1109/ICIP.2014.7025142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward a full-band texture features for spectral images
Facing the increasing number of multi and hyperspectral image acquisitions, in particular for medical and industrial applications, we need accurate features to analyse and assess the content complexity in a metrological way. In this paper, we explore an original way to compute texture features for spectral images in a full-band and vector process. To do it, we developed a dedicated approach for Mathematical Morphology using distance function. Thanks to this, we extend the classical mathematical morphology to spectral images. We show in this paper the scientific construction and preliminary results.