TEMPO和FMN-Na溶液对有机氧化还原液流电池机理的研究

Faishal Maulana Kusumah, Dita Baeti Pridiana, Peter Kusnadi, D. Ariyanti
{"title":"TEMPO和FMN-Na溶液对有机氧化还原液流电池机理的研究","authors":"Faishal Maulana Kusumah, Dita Baeti Pridiana, Peter Kusnadi, D. Ariyanti","doi":"10.14710/REAKTOR.19.3.96-100","DOIUrl":null,"url":null,"abstract":"Among numerous energy storage technologies, redox flow battery is one of the promising technologies that can be used to supply reliable continuation of electricity to electricity grids with a scale up to MW or MWh.  In this paper, the process mechanism and optimization of redox flow battery using organic solution such as Riboflavin-5’-phosphate sodium salt dihydrate (FMN-Na) as anolyte and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) as catholyte were investigated. Sodium and chloride ions in salt feed were moved respectively to anolyte and catholyte by electrochemical reaction of electrolytes during the charge process and return to the feed during the discharge process. The study was carried out by given electric current with different voltage to graphite electrode range 1,5-10,5 volts and TEMPO concentration 0,02-0,08 M. The result shows that the optimum voltage is 7,5 volts with the concentration of TEMPO 0,06 M. The result also confirms the role of TEMPO solutions in the cathode. In addition to that, the FTIR and SEM analysis to the sedimentation generated during the process also revealed the change of the anolyte and catholyte after charging process.Keywords: Organic; Flow Battery; TEMPO; FMN-Na; energy storage","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Organic Redox Flow Battery Mechanism using TEMPO and FMN-Na Solutions\",\"authors\":\"Faishal Maulana Kusumah, Dita Baeti Pridiana, Peter Kusnadi, D. Ariyanti\",\"doi\":\"10.14710/REAKTOR.19.3.96-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among numerous energy storage technologies, redox flow battery is one of the promising technologies that can be used to supply reliable continuation of electricity to electricity grids with a scale up to MW or MWh.  In this paper, the process mechanism and optimization of redox flow battery using organic solution such as Riboflavin-5’-phosphate sodium salt dihydrate (FMN-Na) as anolyte and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) as catholyte were investigated. Sodium and chloride ions in salt feed were moved respectively to anolyte and catholyte by electrochemical reaction of electrolytes during the charge process and return to the feed during the discharge process. The study was carried out by given electric current with different voltage to graphite electrode range 1,5-10,5 volts and TEMPO concentration 0,02-0,08 M. The result shows that the optimum voltage is 7,5 volts with the concentration of TEMPO 0,06 M. The result also confirms the role of TEMPO solutions in the cathode. In addition to that, the FTIR and SEM analysis to the sedimentation generated during the process also revealed the change of the anolyte and catholyte after charging process.Keywords: Organic; Flow Battery; TEMPO; FMN-Na; energy storage\",\"PeriodicalId\":20874,\"journal\":{\"name\":\"Reaktor\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaktor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/REAKTOR.19.3.96-100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/REAKTOR.19.3.96-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在众多储能技术中,氧化还原液流电池是一种很有前途的技术,可用于向电网提供可靠的持续电力,规模可达兆瓦或兆瓦时。本文以核黄素-5′-磷酸钠二水合物(FMN-Na)为阳极液,4-羟基-2,2,6,6-四甲基胡椒碱-1-氧(TEMPO)为阴极液,研究了氧化还原液流电池的工艺机理及优化。盐料中的钠离子和氯离子在充电过程中通过电解质的电化学反应分别移动到阳极液和阴极液中,在放电过程中返回到进料中。在给定电压范围为1,5-10,5伏、TEMPO浓度为0,02-0,08 m的石墨电极上进行了实验研究,结果表明,在TEMPO浓度为0,06 m时,最佳电压为7,5伏,结果也证实了TEMPO溶液在阴极中的作用。此外,通过FTIR和SEM对过程中产生的沉淀进行分析,也揭示了充电过程中阳极液和阴极液的变化。关键词:有机;流电池;节奏;FMN-Na;能量储存
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Organic Redox Flow Battery Mechanism using TEMPO and FMN-Na Solutions
Among numerous energy storage technologies, redox flow battery is one of the promising technologies that can be used to supply reliable continuation of electricity to electricity grids with a scale up to MW or MWh.  In this paper, the process mechanism and optimization of redox flow battery using organic solution such as Riboflavin-5’-phosphate sodium salt dihydrate (FMN-Na) as anolyte and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) as catholyte were investigated. Sodium and chloride ions in salt feed were moved respectively to anolyte and catholyte by electrochemical reaction of electrolytes during the charge process and return to the feed during the discharge process. The study was carried out by given electric current with different voltage to graphite electrode range 1,5-10,5 volts and TEMPO concentration 0,02-0,08 M. The result shows that the optimum voltage is 7,5 volts with the concentration of TEMPO 0,06 M. The result also confirms the role of TEMPO solutions in the cathode. In addition to that, the FTIR and SEM analysis to the sedimentation generated during the process also revealed the change of the anolyte and catholyte after charging process.Keywords: Organic; Flow Battery; TEMPO; FMN-Na; energy storage
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
期刊最新文献
The Effect of Drying on Anthocyanin Content and Antioxidant Activity in Red Cabbage and White Cabbage KINETICS OF ADSORPTION OF HEAVY METALS (IRON) FROM TEXTILE INDUSTRY WASTE USING CALCIUM CARBIDE RESIDUE AS ADSORBENT Lactic acid fermentation of banana peel using Lactobacillus plantarum : Effect of substrate concentration, inoculum concentration, and various nitrogen sources Edible Film Modification Based-on Mucuna Pruriens with Crosslink Method Incorporated with Gelatin, Sodium Alginate, and Green Tea Extract Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1