Chamoli灾害对喜马拉雅河流洪泛平原及水质的影响

S. Meena, A. Chauhan, Kushanav Bhuyan, Ramesh P. Singh
{"title":"Chamoli灾害对喜马拉雅河流洪泛平原及水质的影响","authors":"S. Meena, A. Chauhan, Kushanav Bhuyan, Ramesh P. Singh","doi":"10.5194/EGUSPHERE-EGU21-16592","DOIUrl":null,"url":null,"abstract":"The Himalayan rivers are glacier-fed and are vulnerable to devastating flash floods caused by damming of landslides and outbreak of glacial lakes. On 7 February 2021, around 10:30 am IST, a huge block of glacier mass broke from the Nanda Ghunti glacier. It is evident from the multitemporal satellite imageries from Planet Scope that snow dust deposited in the affected area. During the course of the event, a huge amount of debris along with broken glacial fragments flooded the Rishi Ganga river and washed away the Hydropower plants; Rishi Ganga and Tapovan, more than 71 people were killed, and about 100 people are still missing. Detailed analysis of optical and radar data has been carried out to show the impact of the rockslide, changes in the surface characteristics of the source region, flood plains of the river and water quality of the Himalayan rivers (Alaknanda and Ganga). We have used five different indices Modified Normalized difference water index (MNDWI), Normalized difference vegetation index (NDVI), Enhanced vegetation index (EVI), Normalized difference turbidity Index (NDTI), and Normalized difference chlorophyll index (NDCI), that show pronounced changes in water quality and flood plain at the four different sections of the river. The spectral reflectance and backscattering coefficients derived from high-resolution Planet scope and Sentinel 1 SAR data show characteristics behaviour of the flood plain and water quality. Further, we have also found changes in the water quality of several canals after the Chamoli disaster event as the flood gates were closed to stop the deposit of sediments in the canal.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of the Chamoli disaster on flood Plain and water quality along the Himalayan rivers\",\"authors\":\"S. Meena, A. Chauhan, Kushanav Bhuyan, Ramesh P. Singh\",\"doi\":\"10.5194/EGUSPHERE-EGU21-16592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Himalayan rivers are glacier-fed and are vulnerable to devastating flash floods caused by damming of landslides and outbreak of glacial lakes. On 7 February 2021, around 10:30 am IST, a huge block of glacier mass broke from the Nanda Ghunti glacier. It is evident from the multitemporal satellite imageries from Planet Scope that snow dust deposited in the affected area. During the course of the event, a huge amount of debris along with broken glacial fragments flooded the Rishi Ganga river and washed away the Hydropower plants; Rishi Ganga and Tapovan, more than 71 people were killed, and about 100 people are still missing. Detailed analysis of optical and radar data has been carried out to show the impact of the rockslide, changes in the surface characteristics of the source region, flood plains of the river and water quality of the Himalayan rivers (Alaknanda and Ganga). We have used five different indices Modified Normalized difference water index (MNDWI), Normalized difference vegetation index (NDVI), Enhanced vegetation index (EVI), Normalized difference turbidity Index (NDTI), and Normalized difference chlorophyll index (NDCI), that show pronounced changes in water quality and flood plain at the four different sections of the river. The spectral reflectance and backscattering coefficients derived from high-resolution Planet scope and Sentinel 1 SAR data show characteristics behaviour of the flood plain and water quality. Further, we have also found changes in the water quality of several canals after the Chamoli disaster event as the flood gates were closed to stop the deposit of sediments in the canal.\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-16592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-16592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

喜马拉雅河流由冰川滋养,很容易受到山体滑坡筑坝和冰川湖泊爆发造成的毁灭性洪水的影响。2021年2月7日,美国标准时间上午10点30分左右,一块巨大的冰川从南达·昆提冰川上断裂。从“行星范围”的多时相卫星图像中可以明显看出,雪尘沉积在受影响的地区。在地震过程中,大量的碎片和破碎的冰川碎片淹没了里希恒河,冲走了水电站;Rishi Ganga和Tapovan,超过71人死亡,大约100人仍然失踪。对光学和雷达数据进行了详细的分析,以显示岩石滑坡的影响、源区地表特征的变化、河流的洪泛区和喜马拉雅河流(阿拉克南达河和恒河)的水质。采用修正归一化差水指数(MNDWI)、归一化差植被指数(NDVI)、增强植被指数(EVI)、归一化差浊度指数(NDTI)和归一化差叶绿素指数(NDCI)等5种不同的指数,反映了黄河4个不同河段水质和洪泛平原的显著变化。利用高分辨率的Planet scope和Sentinel 1 SAR数据获得的光谱反射率和后向散射系数显示了洪泛平原和水质的特征行为。此外,我们还发现,在Chamoli灾难事件发生后,由于闸门关闭以阻止沉积物在运河中沉积,几条运河的水质发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of the Chamoli disaster on flood Plain and water quality along the Himalayan rivers
The Himalayan rivers are glacier-fed and are vulnerable to devastating flash floods caused by damming of landslides and outbreak of glacial lakes. On 7 February 2021, around 10:30 am IST, a huge block of glacier mass broke from the Nanda Ghunti glacier. It is evident from the multitemporal satellite imageries from Planet Scope that snow dust deposited in the affected area. During the course of the event, a huge amount of debris along with broken glacial fragments flooded the Rishi Ganga river and washed away the Hydropower plants; Rishi Ganga and Tapovan, more than 71 people were killed, and about 100 people are still missing. Detailed analysis of optical and radar data has been carried out to show the impact of the rockslide, changes in the surface characteristics of the source region, flood plains of the river and water quality of the Himalayan rivers (Alaknanda and Ganga). We have used five different indices Modified Normalized difference water index (MNDWI), Normalized difference vegetation index (NDVI), Enhanced vegetation index (EVI), Normalized difference turbidity Index (NDTI), and Normalized difference chlorophyll index (NDCI), that show pronounced changes in water quality and flood plain at the four different sections of the river. The spectral reflectance and backscattering coefficients derived from high-resolution Planet scope and Sentinel 1 SAR data show characteristics behaviour of the flood plain and water quality. Further, we have also found changes in the water quality of several canals after the Chamoli disaster event as the flood gates were closed to stop the deposit of sediments in the canal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GROOPS: An open-source software package for GNSS processing and gravity field recovery Global flood monitoring with GRACE/GRACE-FO Statistical relations between in-situ measured Bz component and thermospheric density variations Current status of project SWEETS: Estimating thermospheric neutral mass densities from satellite data at various altitudes Blast vibration reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1