深入氧化过程诱导环丙沙星降解的直接和间接机制

M. Voigt, Victoria Langerbein, Jean-Michel Dluziak, Nils Wellen, M. Jaeger
{"title":"深入氧化过程诱导环丙沙星降解的直接和间接机制","authors":"M. Voigt, Victoria Langerbein, Jean-Michel Dluziak, Nils Wellen, M. Jaeger","doi":"10.1080/02772248.2023.2168005","DOIUrl":null,"url":null,"abstract":"Abstract The fluoroquinolone ciprofloxacin occurs worldwide in the aquatic environment and has therefore been listed on the 3rd European union watchlist for monitoring. To eliminate sewage and wastewater treatment plants as entry pathways, advanced oxidation processes have been intensely researched. Hence, photolysis at different pH ranges was studied for its capacity to eradicate ciprofloxacin. High-performance liquid chromatography coupled to high-resolution mass spectrometry was used to identify the degradation products and to monitor all compounds. Ecotoxicity was assessed using quantitative structure-activity relationship analysis comprising the Ecological Structure Activity Relationships tool. Two degradation mechanisms were found active: the direct mechanism, i.e. degradation through ultraviolet absorption by the substance, and the indirect mechanism caused by hydroxyl radicals from water photolysis. The radical scavenger tert-butanol and pH variations revealed that the indirect mechanism predominated in general. The direct photo-induced degradation proceeded about 10 times slower. Products could be attributed to the mechanisms. Based on their chemical structures, all identified products were predicted less toxic by quantitative structure-activity relationship than ciprofloxacin. Mechanistic insight suggested that photo-induced advanced oxidation processes proved efficient for ciprofloxacin elimination when generating hydroxyl radicals. Compounds and pH range hampering their occurrence diminish the efficacy of elimination.","PeriodicalId":23210,"journal":{"name":"Toxicological & Environmental Chemistry","volume":"22 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of the direct and indirect mechanism in the advanced oxidation process induced degradation of ciprofloxacin\",\"authors\":\"M. Voigt, Victoria Langerbein, Jean-Michel Dluziak, Nils Wellen, M. Jaeger\",\"doi\":\"10.1080/02772248.2023.2168005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The fluoroquinolone ciprofloxacin occurs worldwide in the aquatic environment and has therefore been listed on the 3rd European union watchlist for monitoring. To eliminate sewage and wastewater treatment plants as entry pathways, advanced oxidation processes have been intensely researched. Hence, photolysis at different pH ranges was studied for its capacity to eradicate ciprofloxacin. High-performance liquid chromatography coupled to high-resolution mass spectrometry was used to identify the degradation products and to monitor all compounds. Ecotoxicity was assessed using quantitative structure-activity relationship analysis comprising the Ecological Structure Activity Relationships tool. Two degradation mechanisms were found active: the direct mechanism, i.e. degradation through ultraviolet absorption by the substance, and the indirect mechanism caused by hydroxyl radicals from water photolysis. The radical scavenger tert-butanol and pH variations revealed that the indirect mechanism predominated in general. The direct photo-induced degradation proceeded about 10 times slower. Products could be attributed to the mechanisms. Based on their chemical structures, all identified products were predicted less toxic by quantitative structure-activity relationship than ciprofloxacin. Mechanistic insight suggested that photo-induced advanced oxidation processes proved efficient for ciprofloxacin elimination when generating hydroxyl radicals. Compounds and pH range hampering their occurrence diminish the efficacy of elimination.\",\"PeriodicalId\":23210,\"journal\":{\"name\":\"Toxicological & Environmental Chemistry\",\"volume\":\"22 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological & Environmental Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02772248.2023.2168005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological & Environmental Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02772248.2023.2168005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要氟喹诺酮类环丙沙星在世界范围内广泛存在于水生环境中,已被列入欧盟第三次监测名单。为了消除污水和废水处理厂作为进入途径,人们对高级氧化工艺进行了深入研究。因此,研究了不同pH范围下光解对环丙沙星的清除能力。采用高效液相色谱联用高分辨率质谱法对降解产物进行鉴定,并对所有化合物进行监测。生态毒性评估采用定量构效关系分析,包括生态构效关系工具。发现了两种有效的降解机制:一种是直接机制,即物质通过紫外线吸收降解;另一种是由水光解产生的羟基自由基引起的间接机制。自由基清除剂叔丁醇和pH的变化表明,间接机理在总体上占主导地位。直接光诱导降解的速度要慢10倍。产物可以归因于这些机制。根据其化学结构,通过定量构效关系预测所有鉴定产物的毒性均低于环丙沙星。机理分析表明,光诱导的高级氧化过程在产生羟基自由基时被证明是有效的环丙沙星消除。阻碍其发生的化合物和pH范围降低了消除的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of the direct and indirect mechanism in the advanced oxidation process induced degradation of ciprofloxacin
Abstract The fluoroquinolone ciprofloxacin occurs worldwide in the aquatic environment and has therefore been listed on the 3rd European union watchlist for monitoring. To eliminate sewage and wastewater treatment plants as entry pathways, advanced oxidation processes have been intensely researched. Hence, photolysis at different pH ranges was studied for its capacity to eradicate ciprofloxacin. High-performance liquid chromatography coupled to high-resolution mass spectrometry was used to identify the degradation products and to monitor all compounds. Ecotoxicity was assessed using quantitative structure-activity relationship analysis comprising the Ecological Structure Activity Relationships tool. Two degradation mechanisms were found active: the direct mechanism, i.e. degradation through ultraviolet absorption by the substance, and the indirect mechanism caused by hydroxyl radicals from water photolysis. The radical scavenger tert-butanol and pH variations revealed that the indirect mechanism predominated in general. The direct photo-induced degradation proceeded about 10 times slower. Products could be attributed to the mechanisms. Based on their chemical structures, all identified products were predicted less toxic by quantitative structure-activity relationship than ciprofloxacin. Mechanistic insight suggested that photo-induced advanced oxidation processes proved efficient for ciprofloxacin elimination when generating hydroxyl radicals. Compounds and pH range hampering their occurrence diminish the efficacy of elimination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dissipation kinetics and decontamination of novaluron residues in cowpea, eggplant, and okra Artificial bacterial consortium for bioremediation of hydrocarbon polluted sites Univariate and multivariate kinetic and structural analysis of photoinduced tetracycline degradation Estuarine copper concentrations following boat-wash down and subsequent accumulation in blue mussels Potential targets of endocrine-disrupting chemicals related to breast cancer identified by ToxCast and deep learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1