{"title":"非磁性氧化物对六铁素体/环氧复合材料微波吸收性能的增强","authors":"Abanti Nag, Venu Ks, H. Singh","doi":"10.32732/jma.2023.12.1.1","DOIUrl":null,"url":null,"abstract":"The effect of non-magnetic oxides such as Al2O3, TiO2 and ZnO on the microwave absorption properties of magnetoplumbite barium hexaferrite (BaFe11.8Co0.2O19) is analyzed. Barium hexaferrite nanoparticles are synthesized through the sol-gel auto-combustion method. BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites are synthesized in a 1:1 ratio through mechanical mixing and heat treatment. The epoxy composites are fabricated with 50% loading of BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO in epoxy matrix followed by room temperature curing. The powder XRD analyses showed homogeneous distribution of BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composite while TiO2 and ZnO phases dominate in BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites, respectively. Scanning electron microscopy shows the evenly distributed BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composites. The electromagnetic characterization calculated from experimental permittivity and permeability shows reflection loss RL ≤ -10 dB (≥ 90% absorption) for a very small thickness of 0.5 mm over the entire X-band (8-12 GHz) for BaFe11.8Co0.2O19-Al2O3 composites. BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO show RL < - 8 dB with a thickness of 2.5 mm over the frequency range 8–9.7 GHz and RL < - 8 dB with a thickness of 3.6 mm over 8.7-11.1 GHz, respectively. Further, when compared with BaFe11.8Co0.2O19 alone (RL < -7 dB at 3.2 mm in 8-11 GHz), the BaFe11.8Co0.2O19-Al2O3 composite is superior both in terms of the thickness of the coating as well as the percentage absorption in the X-band.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Microwave Absorption Properties of Hexaferrite/Epoxy Composites on the Addition of Non-magnetic Oxides\",\"authors\":\"Abanti Nag, Venu Ks, H. Singh\",\"doi\":\"10.32732/jma.2023.12.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of non-magnetic oxides such as Al2O3, TiO2 and ZnO on the microwave absorption properties of magnetoplumbite barium hexaferrite (BaFe11.8Co0.2O19) is analyzed. Barium hexaferrite nanoparticles are synthesized through the sol-gel auto-combustion method. BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites are synthesized in a 1:1 ratio through mechanical mixing and heat treatment. The epoxy composites are fabricated with 50% loading of BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO in epoxy matrix followed by room temperature curing. The powder XRD analyses showed homogeneous distribution of BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composite while TiO2 and ZnO phases dominate in BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites, respectively. Scanning electron microscopy shows the evenly distributed BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composites. The electromagnetic characterization calculated from experimental permittivity and permeability shows reflection loss RL ≤ -10 dB (≥ 90% absorption) for a very small thickness of 0.5 mm over the entire X-band (8-12 GHz) for BaFe11.8Co0.2O19-Al2O3 composites. BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO show RL < - 8 dB with a thickness of 2.5 mm over the frequency range 8–9.7 GHz and RL < - 8 dB with a thickness of 3.6 mm over 8.7-11.1 GHz, respectively. Further, when compared with BaFe11.8Co0.2O19 alone (RL < -7 dB at 3.2 mm in 8-11 GHz), the BaFe11.8Co0.2O19-Al2O3 composite is superior both in terms of the thickness of the coating as well as the percentage absorption in the X-band.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32732/jma.2023.12.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/jma.2023.12.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancement of Microwave Absorption Properties of Hexaferrite/Epoxy Composites on the Addition of Non-magnetic Oxides
The effect of non-magnetic oxides such as Al2O3, TiO2 and ZnO on the microwave absorption properties of magnetoplumbite barium hexaferrite (BaFe11.8Co0.2O19) is analyzed. Barium hexaferrite nanoparticles are synthesized through the sol-gel auto-combustion method. BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites are synthesized in a 1:1 ratio through mechanical mixing and heat treatment. The epoxy composites are fabricated with 50% loading of BaFe11.8Co0.2O19-Al2O3, BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO in epoxy matrix followed by room temperature curing. The powder XRD analyses showed homogeneous distribution of BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composite while TiO2 and ZnO phases dominate in BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO composites, respectively. Scanning electron microscopy shows the evenly distributed BaFe11.8Co0.2O19 and Al2O3 in BaFe11.8Co0.2O19-Al2O3 composites. The electromagnetic characterization calculated from experimental permittivity and permeability shows reflection loss RL ≤ -10 dB (≥ 90% absorption) for a very small thickness of 0.5 mm over the entire X-band (8-12 GHz) for BaFe11.8Co0.2O19-Al2O3 composites. BaFe11.8Co0.2O19-TiO2 and BaFe11.8Co0.2O19-ZnO show RL < - 8 dB with a thickness of 2.5 mm over the frequency range 8–9.7 GHz and RL < - 8 dB with a thickness of 3.6 mm over 8.7-11.1 GHz, respectively. Further, when compared with BaFe11.8Co0.2O19 alone (RL < -7 dB at 3.2 mm in 8-11 GHz), the BaFe11.8Co0.2O19-Al2O3 composite is superior both in terms of the thickness of the coating as well as the percentage absorption in the X-band.