R包JMbayes用于使用MCMC拟合纵向和时间到事件数据的联合模型

D. Rizopoulos
{"title":"R包JMbayes用于使用MCMC拟合纵向和时间到事件数据的联合模型","authors":"D. Rizopoulos","doi":"10.18637/JSS.V072.I07","DOIUrl":null,"url":null,"abstract":"Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markon chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":"{\"title\":\"The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data using MCMC\",\"authors\":\"D. Rizopoulos\",\"doi\":\"10.18637/JSS.V072.I07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markon chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"211\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V072.I07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V072.I07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 211

摘要

纵向和事件时间数据的联合模型构成了一个有吸引力的建模框架,近年来受到了很多关注。本文介绍了R包JMbayes在使用马尔康链蒙特卡罗算法的贝叶斯方法下拟合这些模型的能力。JMbayes可以拟合广泛的联合模型,包括连续和分类纵向响应的联合模型,并提供了几种选择来建模两种结果之间的关联结构。此外,该软件包可用于对这两种结果进行动态预测,并提供了几个工具来验证这些预测在区分和校准方面。本文以原发性胆汁性肝硬化患者的实际数据为例,说明了所有这些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data using MCMC
Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markon chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1