走向准确、快速的求和

M. Lange
{"title":"走向准确、快速的求和","authors":"M. Lange","doi":"10.1145/3544488","DOIUrl":null,"url":null,"abstract":"We introduce a new accurate summation algorithm based on the error-free summation into floating-point buckets. Our algorithm exploits ideas from Zhu and Hayes’ OnlineExactSum, but it uses a significantly smaller number of accumulators and has a better instruction-level parallelism. In the default setting, our implementation aaaSum returns a faithfully rounded floating-point approximation of the true sum. We also discuss possible modifications for the computation of reproducible, correctly rounded, and multiple precision floating-point approximations. The computational overhead for any of these modifications is kept comparably small. Numerical tests demonstrate that aaaSum performs well for very small to large problem sizes, independent of the condition number of the problem. We compare our algorithm with other accurate and high-precision summation approaches.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"44 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward Accurate and Fast Summation\",\"authors\":\"M. Lange\",\"doi\":\"10.1145/3544488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new accurate summation algorithm based on the error-free summation into floating-point buckets. Our algorithm exploits ideas from Zhu and Hayes’ OnlineExactSum, but it uses a significantly smaller number of accumulators and has a better instruction-level parallelism. In the default setting, our implementation aaaSum returns a faithfully rounded floating-point approximation of the true sum. We also discuss possible modifications for the computation of reproducible, correctly rounded, and multiple precision floating-point approximations. The computational overhead for any of these modifications is kept comparably small. Numerical tests demonstrate that aaaSum performs well for very small to large problem sizes, independent of the condition number of the problem. We compare our algorithm with other accurate and high-precision summation approaches.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"44 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于浮点桶无误差求和的精确求和算法。我们的算法利用了Zhu和Hayes的OnlineExactSum的思想,但它使用的累加器数量要少得多,并且具有更好的指令级并行性。在默认设置中,我们的实现aaaSum返回真实和的忠实舍入浮点近似值。我们还讨论了对可重复、正确舍入和多精度浮点近似值计算的可能修改。任何这些修改的计算开销都保持相对较小。数值测试结果表明,aaaSum对于非常小到很大的问题规模都有良好的性能,与问题的条件数无关。我们将我们的算法与其他精确和高精度的求和方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Accurate and Fast Summation
We introduce a new accurate summation algorithm based on the error-free summation into floating-point buckets. Our algorithm exploits ideas from Zhu and Hayes’ OnlineExactSum, but it uses a significantly smaller number of accumulators and has a better instruction-level parallelism. In the default setting, our implementation aaaSum returns a faithfully rounded floating-point approximation of the true sum. We also discuss possible modifications for the computation of reproducible, correctly rounded, and multiple precision floating-point approximations. The computational overhead for any of these modifications is kept comparably small. Numerical tests demonstrate that aaaSum performs well for very small to large problem sizes, independent of the condition number of the problem. We compare our algorithm with other accurate and high-precision summation approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1