Sn63Pb37焊点PBGA热疲劳可靠性分析

L. Huaicheng, An Tong, Bie Xiaorui, S. Ge, Q. Fei
{"title":"Sn63Pb37焊点PBGA热疲劳可靠性分析","authors":"L. Huaicheng, An Tong, Bie Xiaorui, S. Ge, Q. Fei","doi":"10.1109/ICEPT.2016.7583318","DOIUrl":null,"url":null,"abstract":"Thermal cycling reliability test and finite element analysis have been conducted for plastic ball grid array assembly with Sn63Pb37 solder. Based on the thermal cycling test results, a two-parameter Weibull distribution model was used to determine the characteristic time to failure of plastic ball grid array assembly. Besides, cross-sectioning and optical microscope examination were utilized to identify the failure mechanism and locations of solder joints. Finite element analysis with quarter model was implemented to obtain the strain and stress of solder joints. Furthermore, viscoplastic Anand's model was used to describe the constitutive equation of Sn63Pb37 solder. The life prediction model was established based on Engelmaier's model at last.","PeriodicalId":6881,"journal":{"name":"2016 17th International Conference on Electronic Packaging Technology (ICEPT)","volume":"40 1","pages":"1104-1107"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Thermal fatigue reliability analysis of PBGA with Sn63Pb37 solder joints\",\"authors\":\"L. Huaicheng, An Tong, Bie Xiaorui, S. Ge, Q. Fei\",\"doi\":\"10.1109/ICEPT.2016.7583318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal cycling reliability test and finite element analysis have been conducted for plastic ball grid array assembly with Sn63Pb37 solder. Based on the thermal cycling test results, a two-parameter Weibull distribution model was used to determine the characteristic time to failure of plastic ball grid array assembly. Besides, cross-sectioning and optical microscope examination were utilized to identify the failure mechanism and locations of solder joints. Finite element analysis with quarter model was implemented to obtain the strain and stress of solder joints. Furthermore, viscoplastic Anand's model was used to describe the constitutive equation of Sn63Pb37 solder. The life prediction model was established based on Engelmaier's model at last.\",\"PeriodicalId\":6881,\"journal\":{\"name\":\"2016 17th International Conference on Electronic Packaging Technology (ICEPT)\",\"volume\":\"40 1\",\"pages\":\"1104-1107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Electronic Packaging Technology (ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2016.7583318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Electronic Packaging Technology (ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2016.7583318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用Sn63Pb37焊料对塑料球栅阵列组件进行了热循环可靠性试验和有限元分析。基于热循环试验结果,采用双参数威布尔分布模型确定了塑料球栅阵列组件的特征失效时间。并利用横切面和光学显微镜检查确定焊点的失效机理和位置。采用四分之一模型进行有限元分析,得到焊点的应变和应力。采用粘塑性Anand模型描述了Sn63Pb37焊料的本构方程。最后在Engelmaier模型的基础上建立了寿命预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal fatigue reliability analysis of PBGA with Sn63Pb37 solder joints
Thermal cycling reliability test and finite element analysis have been conducted for plastic ball grid array assembly with Sn63Pb37 solder. Based on the thermal cycling test results, a two-parameter Weibull distribution model was used to determine the characteristic time to failure of plastic ball grid array assembly. Besides, cross-sectioning and optical microscope examination were utilized to identify the failure mechanism and locations of solder joints. Finite element analysis with quarter model was implemented to obtain the strain and stress of solder joints. Furthermore, viscoplastic Anand's model was used to describe the constitutive equation of Sn63Pb37 solder. The life prediction model was established based on Engelmaier's model at last.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unlocking the full potential of Lithography for Advanced Packaging A compact QCW conduction-cooled high power semiconductor laser array Thermal behavior of microchannel cooled high power diode laser arrays Analysis of photoluminescence mechanisms and thermal quenching effects for multicolor phosphor films used in high color rendering white LEDs Interfacial reaction and IMC growth between the undercooled liquid lead-free solder and Cu metallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1