{"title":"活动构造块边界断裂带的全新世地震旋回——以青藏高原东北部祁连-海原断裂带为例","authors":"Shumin Liang, Wenjun Zheng, Dongli Zhang, Hui Peng, Xinzhe Sun, Shiqi Wei","doi":"10.2113/2023/7919174","DOIUrl":null,"url":null,"abstract":"\n Fault zones along active tectonic block boundaries are a significant source of devastating continental earthquakes. Strong earthquakes produce disruptions of sediment and induce characteristic sediments near the fault, which serve as valuable sedimentary evidence for identifying and dating of paleoearthquakes. In this study, we aimed to reconstruct the earthquake history of the Qilian–Haiyuan fault zone in the northeastern Tibetan Plateau during the Holocene. We reanalyzed forty-four trenches and used the sedimentary sequences, event indicators, and age constraints to determine the earthquake history. Our analysis revealed the paleoearthquakes of 6 subsidiary faults of the Qilian–Haiyuan fault zone with accurate event ages and rupture extents. Based on the spatial and temporal distributions of strong earthquakes since 10 ka, we identified five earthquake clusters around the central-eastern Qilian–Haiyuan fault zone including seven rupture cascades where the earthquakes migrated gradually from east to west. The existing seismic gap reveals that the latest migration may not yet be complete and suggests a high probability of M ≥ 7 earthquakes occurring on the Jinqianghe fault, Maomaoshan fault, and the central part of the Lenglongling faults. We concluded that, in order to better understand earthquake cycles and seismic hazards, it is important to consider a fault zone as a whole, including multiple faults and their interaction on the earthquake triggering between nearby faults.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holocene Earthquake Cycles of an Active Tectonic Block Boundary Fault Zone: A Case Study in the Qilian–Haiyuan Fault Zone, Northeastern Tibet Plateau\",\"authors\":\"Shumin Liang, Wenjun Zheng, Dongli Zhang, Hui Peng, Xinzhe Sun, Shiqi Wei\",\"doi\":\"10.2113/2023/7919174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fault zones along active tectonic block boundaries are a significant source of devastating continental earthquakes. Strong earthquakes produce disruptions of sediment and induce characteristic sediments near the fault, which serve as valuable sedimentary evidence for identifying and dating of paleoearthquakes. In this study, we aimed to reconstruct the earthquake history of the Qilian–Haiyuan fault zone in the northeastern Tibetan Plateau during the Holocene. We reanalyzed forty-four trenches and used the sedimentary sequences, event indicators, and age constraints to determine the earthquake history. Our analysis revealed the paleoearthquakes of 6 subsidiary faults of the Qilian–Haiyuan fault zone with accurate event ages and rupture extents. Based on the spatial and temporal distributions of strong earthquakes since 10 ka, we identified five earthquake clusters around the central-eastern Qilian–Haiyuan fault zone including seven rupture cascades where the earthquakes migrated gradually from east to west. The existing seismic gap reveals that the latest migration may not yet be complete and suggests a high probability of M ≥ 7 earthquakes occurring on the Jinqianghe fault, Maomaoshan fault, and the central part of the Lenglongling faults. We concluded that, in order to better understand earthquake cycles and seismic hazards, it is important to consider a fault zone as a whole, including multiple faults and their interaction on the earthquake triggering between nearby faults.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2023/7919174\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2023/7919174","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Holocene Earthquake Cycles of an Active Tectonic Block Boundary Fault Zone: A Case Study in the Qilian–Haiyuan Fault Zone, Northeastern Tibet Plateau
Fault zones along active tectonic block boundaries are a significant source of devastating continental earthquakes. Strong earthquakes produce disruptions of sediment and induce characteristic sediments near the fault, which serve as valuable sedimentary evidence for identifying and dating of paleoearthquakes. In this study, we aimed to reconstruct the earthquake history of the Qilian–Haiyuan fault zone in the northeastern Tibetan Plateau during the Holocene. We reanalyzed forty-four trenches and used the sedimentary sequences, event indicators, and age constraints to determine the earthquake history. Our analysis revealed the paleoearthquakes of 6 subsidiary faults of the Qilian–Haiyuan fault zone with accurate event ages and rupture extents. Based on the spatial and temporal distributions of strong earthquakes since 10 ka, we identified five earthquake clusters around the central-eastern Qilian–Haiyuan fault zone including seven rupture cascades where the earthquakes migrated gradually from east to west. The existing seismic gap reveals that the latest migration may not yet be complete and suggests a high probability of M ≥ 7 earthquakes occurring on the Jinqianghe fault, Maomaoshan fault, and the central part of the Lenglongling faults. We concluded that, in order to better understand earthquake cycles and seismic hazards, it is important to consider a fault zone as a whole, including multiple faults and their interaction on the earthquake triggering between nearby faults.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.