Kelly Lúcia Nazareth Pinho de Aguiar, L. Palermo, C. Mansur
{"title":"具有提高原油采收率潜力的聚合物增粘剂体系综述","authors":"Kelly Lúcia Nazareth Pinho de Aguiar, L. Palermo, C. Mansur","doi":"10.2516/ogst/2021044","DOIUrl":null,"url":null,"abstract":"Due to the growing demand for oil and the large number of mature oil fields, Enhanced Oil Recovery (EOR) techniques are increasingly used to increase the oil recovery factor. Among the chemical methods, the use of polymers stands out to increase the viscosity of the injection fluid and harmonize the advance of this fluid in the reservoir to provide greater sweep efficiency. Synthetic polymers based on acrylamide are widely used for EOR, with Partially Hydrolyzed Polyacrylamide (PHPA) being used the most. However, this polymer has low stability under harsh reservoir conditions (High Temperature and Salinity – HTHS). In order to improve the sweep efficiency of polymeric fluids under these conditions, Hydrophobically Modified Associative Polymers (HMAPs) and Thermo-Viscosifying Polymers (TVPs) are being developed. HMAPs contain small amounts of hydrophobic groups in their water-soluble polymeric chains, and above the Critical Association Concentration (CAC), form hydrophobic microdomains that increase the viscosity of the polymer solution. TVPs contain blocks or thermosensitive grafts that self-assemble and form microdomains, substantially increasing the solution’s viscosity. The performance of these systems is strongly influenced by the chemical group inserted in their structures, polymer concentration, salinity and temperature, among other factors. Furthermore, the application of nanoparticles is being investigated to improve the performance of injection polymers applied in EOR. In general, these systems have excellent thermal stability and salinity tolerance along with high viscosity, and therefore increase the oil recovery factor. Thus, these systems can be considered promising agents for enhanced oil recovery applications under harsh conditions, such as high salinity and temperature. Moreover, stands out the use of genetic programming and artificial intelligence to estimate important parameters for reservoir engineering, process improvement, and optimize polymer flooding in enhanced oil recovery.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Polymer viscosifier systems with potential application for enhanced oil recovery: a review\",\"authors\":\"Kelly Lúcia Nazareth Pinho de Aguiar, L. Palermo, C. Mansur\",\"doi\":\"10.2516/ogst/2021044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the growing demand for oil and the large number of mature oil fields, Enhanced Oil Recovery (EOR) techniques are increasingly used to increase the oil recovery factor. Among the chemical methods, the use of polymers stands out to increase the viscosity of the injection fluid and harmonize the advance of this fluid in the reservoir to provide greater sweep efficiency. Synthetic polymers based on acrylamide are widely used for EOR, with Partially Hydrolyzed Polyacrylamide (PHPA) being used the most. However, this polymer has low stability under harsh reservoir conditions (High Temperature and Salinity – HTHS). In order to improve the sweep efficiency of polymeric fluids under these conditions, Hydrophobically Modified Associative Polymers (HMAPs) and Thermo-Viscosifying Polymers (TVPs) are being developed. HMAPs contain small amounts of hydrophobic groups in their water-soluble polymeric chains, and above the Critical Association Concentration (CAC), form hydrophobic microdomains that increase the viscosity of the polymer solution. TVPs contain blocks or thermosensitive grafts that self-assemble and form microdomains, substantially increasing the solution’s viscosity. The performance of these systems is strongly influenced by the chemical group inserted in their structures, polymer concentration, salinity and temperature, among other factors. Furthermore, the application of nanoparticles is being investigated to improve the performance of injection polymers applied in EOR. In general, these systems have excellent thermal stability and salinity tolerance along with high viscosity, and therefore increase the oil recovery factor. Thus, these systems can be considered promising agents for enhanced oil recovery applications under harsh conditions, such as high salinity and temperature. Moreover, stands out the use of genetic programming and artificial intelligence to estimate important parameters for reservoir engineering, process improvement, and optimize polymer flooding in enhanced oil recovery.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Polymer viscosifier systems with potential application for enhanced oil recovery: a review
Due to the growing demand for oil and the large number of mature oil fields, Enhanced Oil Recovery (EOR) techniques are increasingly used to increase the oil recovery factor. Among the chemical methods, the use of polymers stands out to increase the viscosity of the injection fluid and harmonize the advance of this fluid in the reservoir to provide greater sweep efficiency. Synthetic polymers based on acrylamide are widely used for EOR, with Partially Hydrolyzed Polyacrylamide (PHPA) being used the most. However, this polymer has low stability under harsh reservoir conditions (High Temperature and Salinity – HTHS). In order to improve the sweep efficiency of polymeric fluids under these conditions, Hydrophobically Modified Associative Polymers (HMAPs) and Thermo-Viscosifying Polymers (TVPs) are being developed. HMAPs contain small amounts of hydrophobic groups in their water-soluble polymeric chains, and above the Critical Association Concentration (CAC), form hydrophobic microdomains that increase the viscosity of the polymer solution. TVPs contain blocks or thermosensitive grafts that self-assemble and form microdomains, substantially increasing the solution’s viscosity. The performance of these systems is strongly influenced by the chemical group inserted in their structures, polymer concentration, salinity and temperature, among other factors. Furthermore, the application of nanoparticles is being investigated to improve the performance of injection polymers applied in EOR. In general, these systems have excellent thermal stability and salinity tolerance along with high viscosity, and therefore increase the oil recovery factor. Thus, these systems can be considered promising agents for enhanced oil recovery applications under harsh conditions, such as high salinity and temperature. Moreover, stands out the use of genetic programming and artificial intelligence to estimate important parameters for reservoir engineering, process improvement, and optimize polymer flooding in enhanced oil recovery.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.