{"title":"碳质纳米填料填充聚乙二醇的科学能力演变","authors":"Ayesha Kausar","doi":"10.1177/8756087921999094","DOIUrl":null,"url":null,"abstract":"There is rising interest in the development of poly(ethylene glycol) based nanocomposites. Poly(ethylene glycol) is a synthetic water soluble polyether polymerized from ethylene glycol monomer. Poly(ethylene glycol) matrix has been reinforced with various carbonaceous nanofillers such as graphene, graphene oxide, carbon nanotube, and nanodiamonds to form nanocomposites. In this state-of-the-art review, poly(ethylene glycol)/carbonaceous nanofiller nanocomposites and progress concerning the derived high performance nanomaterials are presented. The morphology, thermal, mechanical, electrical, and other characteristics are enhanced with the nanocarbon nanofillers. Modifying the poly(ethylene glycol) backbone and functionalizing the carbonaceous nanofiller improve the anticipated nanocomposite. Moreover, better nanoparticle dispersion and interaction with the poly(ethylene glycol) have been focused in this regard. Up till now, poly(ethylene glycol) nanocomposites have been researched for lithium ion battery, sensor, and biomedical applications particularly drug delivery and tissue engineering. Future research on poly(ethylene glycol)/carbonaceous nanofiller nanocomposites may help to overcome the challenges related to nanocomposite design and high performance, and may also open new application areas.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"24 1","pages":"490 - 509"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolving scientific aptitude of poly(ethylene glycol) filled with carbonaceous nanofillers\",\"authors\":\"Ayesha Kausar\",\"doi\":\"10.1177/8756087921999094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is rising interest in the development of poly(ethylene glycol) based nanocomposites. Poly(ethylene glycol) is a synthetic water soluble polyether polymerized from ethylene glycol monomer. Poly(ethylene glycol) matrix has been reinforced with various carbonaceous nanofillers such as graphene, graphene oxide, carbon nanotube, and nanodiamonds to form nanocomposites. In this state-of-the-art review, poly(ethylene glycol)/carbonaceous nanofiller nanocomposites and progress concerning the derived high performance nanomaterials are presented. The morphology, thermal, mechanical, electrical, and other characteristics are enhanced with the nanocarbon nanofillers. Modifying the poly(ethylene glycol) backbone and functionalizing the carbonaceous nanofiller improve the anticipated nanocomposite. Moreover, better nanoparticle dispersion and interaction with the poly(ethylene glycol) have been focused in this regard. Up till now, poly(ethylene glycol) nanocomposites have been researched for lithium ion battery, sensor, and biomedical applications particularly drug delivery and tissue engineering. Future research on poly(ethylene glycol)/carbonaceous nanofiller nanocomposites may help to overcome the challenges related to nanocomposite design and high performance, and may also open new application areas.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"24 1\",\"pages\":\"490 - 509\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/8756087921999094\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/8756087921999094","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Evolving scientific aptitude of poly(ethylene glycol) filled with carbonaceous nanofillers
There is rising interest in the development of poly(ethylene glycol) based nanocomposites. Poly(ethylene glycol) is a synthetic water soluble polyether polymerized from ethylene glycol monomer. Poly(ethylene glycol) matrix has been reinforced with various carbonaceous nanofillers such as graphene, graphene oxide, carbon nanotube, and nanodiamonds to form nanocomposites. In this state-of-the-art review, poly(ethylene glycol)/carbonaceous nanofiller nanocomposites and progress concerning the derived high performance nanomaterials are presented. The morphology, thermal, mechanical, electrical, and other characteristics are enhanced with the nanocarbon nanofillers. Modifying the poly(ethylene glycol) backbone and functionalizing the carbonaceous nanofiller improve the anticipated nanocomposite. Moreover, better nanoparticle dispersion and interaction with the poly(ethylene glycol) have been focused in this regard. Up till now, poly(ethylene glycol) nanocomposites have been researched for lithium ion battery, sensor, and biomedical applications particularly drug delivery and tissue engineering. Future research on poly(ethylene glycol)/carbonaceous nanofiller nanocomposites may help to overcome the challenges related to nanocomposite design and high performance, and may also open new application areas.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).