油藏条件下注入CO2后活性流体密度和粘度变化的实验和模型研究

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/ogst/2021026
David C. Santos, Marina N. Lamim, D. S. Costa, A. Mehl, P. Couto, M. Paredes
{"title":"油藏条件下注入CO2后活性流体密度和粘度变化的实验和模型研究","authors":"David C. Santos, Marina N. Lamim, D. S. Costa, A. Mehl, P. Couto, M. Paredes","doi":"10.2516/ogst/2021026","DOIUrl":null,"url":null,"abstract":"In this study, highly accurate measurements of density and dynamic viscosities of a recombined live oil and its mixture with additional CO2 were performed. The experiments were carried out under pressure and temperature gradients found in Brazilian Pre-salt reservoirs, that is, in the pressure range from (27.6 to 68.9) MPa and at (333.15 and 353.15) K. The assumption of volume change on mixing is evaluated from the experimental results, and the influence of pressure and temperature on the volume change upon mixing is assessed. The densities of mixtures are calculated considering (i) the excess volume approach, and (ii) no volume change. The densities are better correlated using the excess volume approach with Average Absolute Deviations (AAD) of 0.03%. Thirteen mixing rules of viscosity are examined by comparing the predicted values with the experimental viscosity of the recombined live oil + CO2 mixture. The performance of some rules using compositional fractions (molar, volume and weight) is also evaluated. Thus, a total of 28 different ways to calculate the mixture viscosities were tested in this study. The worst result was obtained with Bingham’s method, leading to 148.6% AAD. The best result was obtained from Lederer’s method with 2% AAD and a maximum deviation of 5.8% using volume fractions and the fitting parameter α. In addition, deviations presented by the predictive methods of Chevron, Double log, and Kendall did not exceed 9% AAD, using weight fractions (Chevron and Double log) and molar fractions (Kendall and Monroe).","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"70 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experimental and modeling studies of density and viscosity behavior of a live fluid due to CO2 injection at reservoir condition\",\"authors\":\"David C. Santos, Marina N. Lamim, D. S. Costa, A. Mehl, P. Couto, M. Paredes\",\"doi\":\"10.2516/ogst/2021026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, highly accurate measurements of density and dynamic viscosities of a recombined live oil and its mixture with additional CO2 were performed. The experiments were carried out under pressure and temperature gradients found in Brazilian Pre-salt reservoirs, that is, in the pressure range from (27.6 to 68.9) MPa and at (333.15 and 353.15) K. The assumption of volume change on mixing is evaluated from the experimental results, and the influence of pressure and temperature on the volume change upon mixing is assessed. The densities of mixtures are calculated considering (i) the excess volume approach, and (ii) no volume change. The densities are better correlated using the excess volume approach with Average Absolute Deviations (AAD) of 0.03%. Thirteen mixing rules of viscosity are examined by comparing the predicted values with the experimental viscosity of the recombined live oil + CO2 mixture. The performance of some rules using compositional fractions (molar, volume and weight) is also evaluated. Thus, a total of 28 different ways to calculate the mixture viscosities were tested in this study. The worst result was obtained with Bingham’s method, leading to 148.6% AAD. The best result was obtained from Lederer’s method with 2% AAD and a maximum deviation of 5.8% using volume fractions and the fitting parameter α. In addition, deviations presented by the predictive methods of Chevron, Double log, and Kendall did not exceed 9% AAD, using weight fractions (Chevron and Double log) and molar fractions (Kendall and Monroe).\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

摘要

在这项研究中,对重新组合的活油及其与额外二氧化碳的混合物进行了高度精确的密度和动态粘度测量。实验是在巴西盐下储层的压力和温度梯度下进行的,即压力范围为(27.6 ~ 68.9)MPa,压力范围为(333.15 ~ 353.15)k。根据实验结果,评价了混合过程中体积变化的假设,并评价了压力和温度对混合过程中体积变化的影响。混合物密度的计算考虑了(i)过量体积法和(ii)无体积变化。过量体积法对密度的相关性较好,平均绝对偏差(AAD)为0.03%。通过将预测值与实验值进行对比,考察了13种粘度混合规律。使用组分分数(摩尔、体积和重量)的一些规则的性能也进行了评估。因此,本研究共测试了28种不同的混合粘度计算方法。Bingham法的结果最差,AAD为148.6%。采用体积分数和拟合参数α的Lederer法,在AAD为2%、最大偏差为5.8%的条件下得到最佳结果。此外,使用权重分数(Chevron和Double log)和摩尔分数(Kendall和Monroe)的Chevron、Double log和Kendall预测方法所呈现的偏差不超过9% AAD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and modeling studies of density and viscosity behavior of a live fluid due to CO2 injection at reservoir condition
In this study, highly accurate measurements of density and dynamic viscosities of a recombined live oil and its mixture with additional CO2 were performed. The experiments were carried out under pressure and temperature gradients found in Brazilian Pre-salt reservoirs, that is, in the pressure range from (27.6 to 68.9) MPa and at (333.15 and 353.15) K. The assumption of volume change on mixing is evaluated from the experimental results, and the influence of pressure and temperature on the volume change upon mixing is assessed. The densities of mixtures are calculated considering (i) the excess volume approach, and (ii) no volume change. The densities are better correlated using the excess volume approach with Average Absolute Deviations (AAD) of 0.03%. Thirteen mixing rules of viscosity are examined by comparing the predicted values with the experimental viscosity of the recombined live oil + CO2 mixture. The performance of some rules using compositional fractions (molar, volume and weight) is also evaluated. Thus, a total of 28 different ways to calculate the mixture viscosities were tested in this study. The worst result was obtained with Bingham’s method, leading to 148.6% AAD. The best result was obtained from Lederer’s method with 2% AAD and a maximum deviation of 5.8% using volume fractions and the fitting parameter α. In addition, deviations presented by the predictive methods of Chevron, Double log, and Kendall did not exceed 9% AAD, using weight fractions (Chevron and Double log) and molar fractions (Kendall and Monroe).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1