加性和倍增性全基因组关联模型鉴定与生长相关的基因

Cynthia Zavala, N. Serao, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas
{"title":"加性和倍增性全基因组关联模型鉴定与生长相关的基因","authors":"Cynthia Zavala, N. Serao, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas","doi":"10.1109/BIBMW.2011.6112527","DOIUrl":null,"url":null,"abstract":"Standard genome-wide association studies evaluate the association between single nucleotide polymorphisms (SNPs or Genotype G) and phenotype (e.g. growth) conditional on non-SNP covariates including environmental factors (E, e.g. diet) or population stratification, on an additive fashion. For traits known to be the result of genotype-by-environment interactions (G×E), like growth, a multiplicative model could potentially uncover additional SNPs that influence growth on a context-dependent (e.g. diet or breed) fashion. The objective of this study was to assess and compare the performance of context-independent (additive, G+E) and context-dependent (multiplicative, G+E+G×E) models to identify polymorphisms and corresponding genes associated with growth that are context-independent and context-dependent. In addition to single-SNP analysis, a multi-SNP haplotype-based analysis that can increase the precision of the estimates was evaluated for the additive model.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"24 1","pages":"975-977"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive and multiplicative genome-wide association models identify genes associated with growth\",\"authors\":\"Cynthia Zavala, N. Serao, M. Villamil, G. Caetano-Anollés, S. Rodriguez-Zas\",\"doi\":\"10.1109/BIBMW.2011.6112527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard genome-wide association studies evaluate the association between single nucleotide polymorphisms (SNPs or Genotype G) and phenotype (e.g. growth) conditional on non-SNP covariates including environmental factors (E, e.g. diet) or population stratification, on an additive fashion. For traits known to be the result of genotype-by-environment interactions (G×E), like growth, a multiplicative model could potentially uncover additional SNPs that influence growth on a context-dependent (e.g. diet or breed) fashion. The objective of this study was to assess and compare the performance of context-independent (additive, G+E) and context-dependent (multiplicative, G+E+G×E) models to identify polymorphisms and corresponding genes associated with growth that are context-independent and context-dependent. In addition to single-SNP analysis, a multi-SNP haplotype-based analysis that can increase the precision of the estimates was evaluated for the additive model.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"24 1\",\"pages\":\"975-977\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准全基因组关联研究评估单核苷酸多态性(snp或基因型G)和表型(如生长)之间的关联,条件是非snp协变量,包括环境因素(E,如饮食)或群体分层,以加性方式。对于已知是基因型与环境相互作用的结果的性状(G×E),如生长,乘法模型可能会发现影响生长的其他snp,这些snp依赖于环境(例如饮食或品种)。本研究的目的是评估和比较环境无关(加性,G+E)和环境依赖(乘法,G+E+G×E)模型的性能,以确定与生长相关的环境无关和环境依赖的多态性和相应基因。除了单snp分析外,还对基于多snp单倍型的分析进行了评估,该分析可以提高加性模型的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive and multiplicative genome-wide association models identify genes associated with growth
Standard genome-wide association studies evaluate the association between single nucleotide polymorphisms (SNPs or Genotype G) and phenotype (e.g. growth) conditional on non-SNP covariates including environmental factors (E, e.g. diet) or population stratification, on an additive fashion. For traits known to be the result of genotype-by-environment interactions (G×E), like growth, a multiplicative model could potentially uncover additional SNPs that influence growth on a context-dependent (e.g. diet or breed) fashion. The objective of this study was to assess and compare the performance of context-independent (additive, G+E) and context-dependent (multiplicative, G+E+G×E) models to identify polymorphisms and corresponding genes associated with growth that are context-independent and context-dependent. In addition to single-SNP analysis, a multi-SNP haplotype-based analysis that can increase the precision of the estimates was evaluated for the additive model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1