{"title":"碳纳米管上的脑细胞:神经元和神经胶质细胞形态和功能的改变","authors":"W. Lee, Bo-Eun Yoon","doi":"10.4172/2324-8777.1000241","DOIUrl":null,"url":null,"abstract":"Carbon Nanotubes (CNT) are promising material for research and medical application. Because of the electrochemical nature of CNT, it is considered as a potentially effective nanomaterial in neuroscience. By the way, properties of these CNT are dependent on how they are synthesized or which functional groups they have. As the nature of CNT varies, the effect on brain cells can have different features from cell to cell. Also, the diversity should be concerned to not only neurons also glia in the brain. Therefore, we focus on studies for understanding the functional and morphological changes of neurons and glia in the effects of CNT.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"59 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Brain Cells on the Carbon Nanotubes: Morphological and Functional Changes in Neurons and Glia\",\"authors\":\"W. Lee, Bo-Eun Yoon\",\"doi\":\"10.4172/2324-8777.1000241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon Nanotubes (CNT) are promising material for research and medical application. Because of the electrochemical nature of CNT, it is considered as a potentially effective nanomaterial in neuroscience. By the way, properties of these CNT are dependent on how they are synthesized or which functional groups they have. As the nature of CNT varies, the effect on brain cells can have different features from cell to cell. Also, the diversity should be concerned to not only neurons also glia in the brain. Therefore, we focus on studies for understanding the functional and morphological changes of neurons and glia in the effects of CNT.\",\"PeriodicalId\":16457,\"journal\":{\"name\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"volume\":\"59 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2324-8777.1000241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Brain Cells on the Carbon Nanotubes: Morphological and Functional Changes in Neurons and Glia
Carbon Nanotubes (CNT) are promising material for research and medical application. Because of the electrochemical nature of CNT, it is considered as a potentially effective nanomaterial in neuroscience. By the way, properties of these CNT are dependent on how they are synthesized or which functional groups they have. As the nature of CNT varies, the effect on brain cells can have different features from cell to cell. Also, the diversity should be concerned to not only neurons also glia in the brain. Therefore, we focus on studies for understanding the functional and morphological changes of neurons and glia in the effects of CNT.