{"title":"苯二噻吩基有机光伏材料的计算化学研究进展","authors":"Felipe A. Angel, M. B. Camarada, I. Jessop","doi":"10.1080/10408436.2022.2052798","DOIUrl":null,"url":null,"abstract":"Abstract Over the past years, highly efficient conjugated polymers and small molecules have led to the development of organic photovoltaics (OPVs) as a promising alternative to conventional solar cells. Among the many designs, benzodithiophene (BDT)-based systems have achieved outstanding power conversion efficiency (PCE), breaking the 10% PCE barrier in the single-junction OPV devices. However, the precise molecular design of BDT-based materials to tune optical and electrochemical properties, morphology, and interaction between layers remains a challenge. At this point, computational chemistry provides an excellent option to supplement traditional characterization methods and, as a vital tool for designing new systems, understanding their structure–property relationship, predicting their performance, and speeding up OPV research. Hence, this review focused on advances in theoretical simulations of BDT-based OPVs during the last decade. First, a brief introduction of theoretical methodologies, including molecular dynamics simulations and quantum-chemical methods, is given. Then, selected examples of BDT-based materials that have shown great potential to generate high-efficiency devices were reviewed, considering DFT, deterministic, and stochastic methods. Finally, prospects and challenges are pointed out for the future design of improved OPVs.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"44 1","pages":"333 - 360"},"PeriodicalIF":8.1000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computational chemistry advances on benzodithiophene-based organic photovoltaic materials\",\"authors\":\"Felipe A. Angel, M. B. Camarada, I. Jessop\",\"doi\":\"10.1080/10408436.2022.2052798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Over the past years, highly efficient conjugated polymers and small molecules have led to the development of organic photovoltaics (OPVs) as a promising alternative to conventional solar cells. Among the many designs, benzodithiophene (BDT)-based systems have achieved outstanding power conversion efficiency (PCE), breaking the 10% PCE barrier in the single-junction OPV devices. However, the precise molecular design of BDT-based materials to tune optical and electrochemical properties, morphology, and interaction between layers remains a challenge. At this point, computational chemistry provides an excellent option to supplement traditional characterization methods and, as a vital tool for designing new systems, understanding their structure–property relationship, predicting their performance, and speeding up OPV research. Hence, this review focused on advances in theoretical simulations of BDT-based OPVs during the last decade. First, a brief introduction of theoretical methodologies, including molecular dynamics simulations and quantum-chemical methods, is given. Then, selected examples of BDT-based materials that have shown great potential to generate high-efficiency devices were reviewed, considering DFT, deterministic, and stochastic methods. Finally, prospects and challenges are pointed out for the future design of improved OPVs.\",\"PeriodicalId\":55203,\"journal\":{\"name\":\"Critical Reviews in Solid State and Materials Sciences\",\"volume\":\"44 1\",\"pages\":\"333 - 360\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Solid State and Materials Sciences\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10408436.2022.2052798\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Solid State and Materials Sciences","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10408436.2022.2052798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational chemistry advances on benzodithiophene-based organic photovoltaic materials
Abstract Over the past years, highly efficient conjugated polymers and small molecules have led to the development of organic photovoltaics (OPVs) as a promising alternative to conventional solar cells. Among the many designs, benzodithiophene (BDT)-based systems have achieved outstanding power conversion efficiency (PCE), breaking the 10% PCE barrier in the single-junction OPV devices. However, the precise molecular design of BDT-based materials to tune optical and electrochemical properties, morphology, and interaction between layers remains a challenge. At this point, computational chemistry provides an excellent option to supplement traditional characterization methods and, as a vital tool for designing new systems, understanding their structure–property relationship, predicting their performance, and speeding up OPV research. Hence, this review focused on advances in theoretical simulations of BDT-based OPVs during the last decade. First, a brief introduction of theoretical methodologies, including molecular dynamics simulations and quantum-chemical methods, is given. Then, selected examples of BDT-based materials that have shown great potential to generate high-efficiency devices were reviewed, considering DFT, deterministic, and stochastic methods. Finally, prospects and challenges are pointed out for the future design of improved OPVs.
期刊介绍:
Critical Reviews in Solid State and Materials Sciences covers a wide range of topics including solid state materials properties, processing, and applications. The journal provides insights into the latest developments and understandings in these areas, with an emphasis on new and emerging theoretical and experimental topics. It encompasses disciplines such as condensed matter physics, physical chemistry, materials science, and electrical, chemical, and mechanical engineering. Additionally, cross-disciplinary engineering and science specialties are included in the scope of the journal.