汽车车轮用复合材料力学性能研究

Eneyw Gardie, Negash Alemu
{"title":"汽车车轮用复合材料力学性能研究","authors":"Eneyw Gardie, Negash Alemu","doi":"10.37421/JME.2019.8.548","DOIUrl":null,"url":null,"abstract":"Nowadays the development of using fiber-reinforced polymer composites in the field of aviation, defense, automotive, and marine industry is growing due to their lower density as compared with conventional materials. In the automotive industry, the requirements of reduction of weight and fuel consumption have become an essential study without losing any mechanical strength. Fiber-reinforced polymer composite materials are an alternative automotive wheel materials having outstanding mechanical properties via lower density, high fatigue resistance, flexibility of design, stability of dimension, better resistance of corrosion, the resistance of high temperature, high mechanical strength and light in weight, etc. To determine the mechanical properties of fiber-reinforced carbon epoxy composite material using quasi-isotropic orientation having [45/0/0/0/0/-45/90/90/90/90/-45/0/0/0/0/45]s stacking sequences with a total number of 32 plies was prepared and mechanical characterization was performed. To quantify this analysis tensile and compression tests were performed by fabricating the samples through hand layup as per ASTM standards. From the result, fiberreinforced carbon epoxy composite material has excellent tensile strength in the longitudinal direction and moderate compressive strength in the transversal direction.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"47 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on the Mechanical Characterization of Composite Materials forAutomotive Wheel Application\",\"authors\":\"Eneyw Gardie, Negash Alemu\",\"doi\":\"10.37421/JME.2019.8.548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the development of using fiber-reinforced polymer composites in the field of aviation, defense, automotive, and marine industry is growing due to their lower density as compared with conventional materials. In the automotive industry, the requirements of reduction of weight and fuel consumption have become an essential study without losing any mechanical strength. Fiber-reinforced polymer composite materials are an alternative automotive wheel materials having outstanding mechanical properties via lower density, high fatigue resistance, flexibility of design, stability of dimension, better resistance of corrosion, the resistance of high temperature, high mechanical strength and light in weight, etc. To determine the mechanical properties of fiber-reinforced carbon epoxy composite material using quasi-isotropic orientation having [45/0/0/0/0/-45/90/90/90/90/-45/0/0/0/0/45]s stacking sequences with a total number of 32 plies was prepared and mechanical characterization was performed. To quantify this analysis tensile and compression tests were performed by fabricating the samples through hand layup as per ASTM standards. From the result, fiberreinforced carbon epoxy composite material has excellent tensile strength in the longitudinal direction and moderate compressive strength in the transversal direction.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"47 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37421/JME.2019.8.548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37421/JME.2019.8.548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与传统材料相比,纤维增强聚合物复合材料的密度较低,因此在航空、国防、汽车和海洋工业等领域的应用日益广泛。在汽车工业中,在不损失任何机械强度的情况下减轻重量和燃料消耗的要求已成为一项必不可少的研究。纤维增强高分子复合材料具有密度低、抗疲劳性能好、设计灵活、尺寸稳定、耐腐蚀、耐高温、机械强度高、重量轻等优异的机械性能,是一种可替代的汽车车轮材料。制备了[45/0/0/0/0/ 0/-45/90/90/90/90/-45/0/0/0/0/45]s层序的准各向同性纤维增强碳环氧复合材料,并对其力学性能进行了表征。为了量化这一分析,拉伸和压缩测试是根据ASTM标准通过手工铺层制作样品进行的。结果表明,纤维增强碳环氧复合材料具有优异的纵向抗拉强度和中等的横向抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Mechanical Characterization of Composite Materials forAutomotive Wheel Application
Nowadays the development of using fiber-reinforced polymer composites in the field of aviation, defense, automotive, and marine industry is growing due to their lower density as compared with conventional materials. In the automotive industry, the requirements of reduction of weight and fuel consumption have become an essential study without losing any mechanical strength. Fiber-reinforced polymer composite materials are an alternative automotive wheel materials having outstanding mechanical properties via lower density, high fatigue resistance, flexibility of design, stability of dimension, better resistance of corrosion, the resistance of high temperature, high mechanical strength and light in weight, etc. To determine the mechanical properties of fiber-reinforced carbon epoxy composite material using quasi-isotropic orientation having [45/0/0/0/0/-45/90/90/90/90/-45/0/0/0/0/45]s stacking sequences with a total number of 32 plies was prepared and mechanical characterization was performed. To quantify this analysis tensile and compression tests were performed by fabricating the samples through hand layup as per ASTM standards. From the result, fiberreinforced carbon epoxy composite material has excellent tensile strength in the longitudinal direction and moderate compressive strength in the transversal direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elements of Antigen Introducing Cells can be Adjusted by GoldNanoparticles Presentation: A Review Article Editorial Note for Journal of Material Sciences and Engineering Market Analysis on Biomaterials, Cellular and Tissue Engineering Good Governance in Oromia: Challenges and Strategies (Major Cities in Arsi and East Shewa zone in focus, Ethiopia) Pico/Nano/Micro Drop Dispensing Platform Using Unique DisposableCartridges for Non-Contact & no Cross Contamination Dispensing in LifeSciences and Industry: A Review Article
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1