{"title":"半铬废液中铬的生物吸附:第一部分:蜡样芽孢杆菌的有效污染治理","authors":"S. Kailasam, K. Balaji, S. Kanth","doi":"10.34314/jalca.v116i11.4662","DOIUrl":null,"url":null,"abstract":"The current study focuses on the isolation of Bacillus cerus from mangrove rhizosphere and its ability to treat semi-chrome process liquor of upper leathers. This strain has been identified by its molecular characteristics (16s rRNA sequencing) and confirmation has been obtained from neighbor joining tree. Minimum inhibitory concentration of the strain has been found to be 50 ppm. The growth pattern of this organism has been investigated in the presence of chromium, which showed the bacterial strain can grow luxuriantly at 50 and 100 ppm concentration of chromium. Biosorption study has been conducted at different concentrations (50, 100, 150, 200 and 250 ppm) of chromium. The biosorption capability of Bacillus cerus has been found to be 80.78, 73.19, 65.86, 59.44 and 39.27% for 50, 100, 150, 200 and 250 ppm respectively. Chromium sorption from the semi-chrome process liquor by Bacillus cerus has also been investigated, which showed a reduction of 76.15, 68.56, 61.63, 56.29 and 36.51% against 50, 100, 150, 200 and 250 ppm of chromium. Sorption characterization has been carried out by FTIR (Fourier Transform Infra-Red spectroscopy) and SEM (Scanning Electron Microscopy) analyses and the results confirmed the presence of sorption of chromium in Bacillus cerus.","PeriodicalId":17201,"journal":{"name":"Journal of The American Leather Chemists Association","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosorption of Chromium from Spent Semi-Chrome Liquor: Part 1 Effective Pollution Abatement using Bacillus cerus\",\"authors\":\"S. Kailasam, K. Balaji, S. Kanth\",\"doi\":\"10.34314/jalca.v116i11.4662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study focuses on the isolation of Bacillus cerus from mangrove rhizosphere and its ability to treat semi-chrome process liquor of upper leathers. This strain has been identified by its molecular characteristics (16s rRNA sequencing) and confirmation has been obtained from neighbor joining tree. Minimum inhibitory concentration of the strain has been found to be 50 ppm. The growth pattern of this organism has been investigated in the presence of chromium, which showed the bacterial strain can grow luxuriantly at 50 and 100 ppm concentration of chromium. Biosorption study has been conducted at different concentrations (50, 100, 150, 200 and 250 ppm) of chromium. The biosorption capability of Bacillus cerus has been found to be 80.78, 73.19, 65.86, 59.44 and 39.27% for 50, 100, 150, 200 and 250 ppm respectively. Chromium sorption from the semi-chrome process liquor by Bacillus cerus has also been investigated, which showed a reduction of 76.15, 68.56, 61.63, 56.29 and 36.51% against 50, 100, 150, 200 and 250 ppm of chromium. Sorption characterization has been carried out by FTIR (Fourier Transform Infra-Red spectroscopy) and SEM (Scanning Electron Microscopy) analyses and the results confirmed the presence of sorption of chromium in Bacillus cerus.\",\"PeriodicalId\":17201,\"journal\":{\"name\":\"Journal of The American Leather Chemists Association\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Leather Chemists Association\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.34314/jalca.v116i11.4662\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Leather Chemists Association","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.34314/jalca.v116i11.4662","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Biosorption of Chromium from Spent Semi-Chrome Liquor: Part 1 Effective Pollution Abatement using Bacillus cerus
The current study focuses on the isolation of Bacillus cerus from mangrove rhizosphere and its ability to treat semi-chrome process liquor of upper leathers. This strain has been identified by its molecular characteristics (16s rRNA sequencing) and confirmation has been obtained from neighbor joining tree. Minimum inhibitory concentration of the strain has been found to be 50 ppm. The growth pattern of this organism has been investigated in the presence of chromium, which showed the bacterial strain can grow luxuriantly at 50 and 100 ppm concentration of chromium. Biosorption study has been conducted at different concentrations (50, 100, 150, 200 and 250 ppm) of chromium. The biosorption capability of Bacillus cerus has been found to be 80.78, 73.19, 65.86, 59.44 and 39.27% for 50, 100, 150, 200 and 250 ppm respectively. Chromium sorption from the semi-chrome process liquor by Bacillus cerus has also been investigated, which showed a reduction of 76.15, 68.56, 61.63, 56.29 and 36.51% against 50, 100, 150, 200 and 250 ppm of chromium. Sorption characterization has been carried out by FTIR (Fourier Transform Infra-Red spectroscopy) and SEM (Scanning Electron Microscopy) analyses and the results confirmed the presence of sorption of chromium in Bacillus cerus.
期刊介绍:
The Journal of the American Leather Chemists Association publishes manuscripts on all aspects of leather science, engineering, technology, and economics, and will consider related subjects that address concerns of the industry. Examples: hide/skin quality or utilization, leather production methods/equipment, tanning materials/leather chemicals, new and improved leathers, collagen studies, leather by-products, impacts of changes in leather products industries, process efficiency, sustainability, regulatory, safety, environmental, tannery waste management and industry economics.