CMP-PIM:一种基于比较器的高效内存处理神经网络加速器

Shaahin Angizi, Zhezhi He, A. S. Rakin, Deliang Fan
{"title":"CMP-PIM:一种基于比较器的高效内存处理神经网络加速器","authors":"Shaahin Angizi, Zhezhi He, A. S. Rakin, Deliang Fan","doi":"10.1145/3195970.3196009","DOIUrl":null,"url":null,"abstract":"In this paper, an energy-efficient and high-speed comparator-based processing-in-memory accelerator (CMP-PIM) is proposed to efficiently execute a novel hardware-oriented comparator-based deep neural network called CMPNET. Inspired by local binary pattern feature extraction method combined with depthwise separable convolution, we first modify the existing Convolutional Neural Network (CNN) algorithm by replacing the computationally-intensive multiplications in convolution layers with more efficient and less complex comparison and addition. Then, we propose a CMP-PIM that employs parallel computational memory sub-array as a fundamental processing unit based on SOT-MRAM. We compare CMP-PIM accelerator performance on different data-sets with recent CNN accelerator designs. With the close inference accuracy on SVHN data-set, CMP-PIM can get ~ 94× and 3× better energy efficiency compared to CNN and Local Binary CNN (LBCNN), respectively. Besides, it achieves 4.3× speed-up compared to CNN-baseline with identical network configuration.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"27 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"CMP-PIM: An Energy-Efficient Comparator-based Processing-In-Memory Neural Network Accelerator\",\"authors\":\"Shaahin Angizi, Zhezhi He, A. S. Rakin, Deliang Fan\",\"doi\":\"10.1145/3195970.3196009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an energy-efficient and high-speed comparator-based processing-in-memory accelerator (CMP-PIM) is proposed to efficiently execute a novel hardware-oriented comparator-based deep neural network called CMPNET. Inspired by local binary pattern feature extraction method combined with depthwise separable convolution, we first modify the existing Convolutional Neural Network (CNN) algorithm by replacing the computationally-intensive multiplications in convolution layers with more efficient and less complex comparison and addition. Then, we propose a CMP-PIM that employs parallel computational memory sub-array as a fundamental processing unit based on SOT-MRAM. We compare CMP-PIM accelerator performance on different data-sets with recent CNN accelerator designs. With the close inference accuracy on SVHN data-set, CMP-PIM can get ~ 94× and 3× better energy efficiency compared to CNN and Local Binary CNN (LBCNN), respectively. Besides, it achieves 4.3× speed-up compared to CNN-baseline with identical network configuration.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"27 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

本文提出了一种高效、高速的基于比较器的内存处理加速器(CMP-PIM),用于高效执行一种新型的基于硬件比较器的深度神经网络CMPNET。受局部二值模式特征提取方法与深度可分卷积相结合的启发,我们首先对现有的卷积神经网络(CNN)算法进行了改进,将卷积层中计算量大的乘法替换为更高效、更简单的比较和加法。然后,我们提出了一种基于SOT-MRAM的并行计算存储器子阵列作为基本处理单元的CMP-PIM。我们比较了CMP-PIM加速器在不同数据集上的性能和最近的CNN加速器设计。CMP-PIM在SVHN数据集上的推理精度接近,比CNN和Local Binary CNN (LBCNN)分别提高了94倍和3倍的能效。在相同的网络配置下,与CNN-baseline相比提速4.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMP-PIM: An Energy-Efficient Comparator-based Processing-In-Memory Neural Network Accelerator
In this paper, an energy-efficient and high-speed comparator-based processing-in-memory accelerator (CMP-PIM) is proposed to efficiently execute a novel hardware-oriented comparator-based deep neural network called CMPNET. Inspired by local binary pattern feature extraction method combined with depthwise separable convolution, we first modify the existing Convolutional Neural Network (CNN) algorithm by replacing the computationally-intensive multiplications in convolution layers with more efficient and less complex comparison and addition. Then, we propose a CMP-PIM that employs parallel computational memory sub-array as a fundamental processing unit based on SOT-MRAM. We compare CMP-PIM accelerator performance on different data-sets with recent CNN accelerator designs. With the close inference accuracy on SVHN data-set, CMP-PIM can get ~ 94× and 3× better energy efficiency compared to CNN and Local Binary CNN (LBCNN), respectively. Besides, it achieves 4.3× speed-up compared to CNN-baseline with identical network configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1