{"title":"纳米CdO复合材料的合成、表征及其在模拟染料废水中的应用","authors":"Atiya Firdous, U. Hameed","doi":"10.9734/acsj/2016/23799","DOIUrl":null,"url":null,"abstract":"The current study emphasizes the fabrications of Cadmium Oxide by extremity up approach adopting co-precipitation procedure. The surface morphology of fabricated Nano composites cadmium oxide was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microcopy (SEM) techniques. The treatment of simulated dyes wastewater was carried out by adsorption method using CdO Nano composites. In addition Malachite Green Oxalate (MGO) was selected as a model replicated system of dye wastewater, to explore the potential practicability for the elimination of the toxic dye. The adsorption experiments were heralded under the optimized conditions like adsorbent dosage, dye concentration and temperature. The acceptability of adsorption progression was estimated by proceeding adsorption models like Freundlich, Langmuir and D-R (Dubinin–Radushkevich). The values of R 2 show that Freundlich model is the best fitted model. The thermodynamic study was conducted to determine the values of free energy (∆G°), entropy (∆S°) and enthalpy (∆H°) change of the system. Adsorption Kinetic was also studied by Boyd’s model. The results demonstrated that adsorption efficiency was found to be 93% for Cadmium Oxidedye-Nano composites systems. The present model system can be employed on industrial scale as a single step process for the removal of dye pollutants and thus it could provide a new raised area for waste minimization. Original Research Article Atiya Firdous and Hameed; ACSJ, 13(1): 1-10, 2016; Article no.ACSJ.23799 2","PeriodicalId":7399,"journal":{"name":"American Chemical Science Journal","volume":"49 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Synthesis and Characterization of Nano Composites of CdO and Its Applications for the Treatment of Simulated Dye Wastewater\",\"authors\":\"Atiya Firdous, U. Hameed\",\"doi\":\"10.9734/acsj/2016/23799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study emphasizes the fabrications of Cadmium Oxide by extremity up approach adopting co-precipitation procedure. The surface morphology of fabricated Nano composites cadmium oxide was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microcopy (SEM) techniques. The treatment of simulated dyes wastewater was carried out by adsorption method using CdO Nano composites. In addition Malachite Green Oxalate (MGO) was selected as a model replicated system of dye wastewater, to explore the potential practicability for the elimination of the toxic dye. The adsorption experiments were heralded under the optimized conditions like adsorbent dosage, dye concentration and temperature. The acceptability of adsorption progression was estimated by proceeding adsorption models like Freundlich, Langmuir and D-R (Dubinin–Radushkevich). The values of R 2 show that Freundlich model is the best fitted model. The thermodynamic study was conducted to determine the values of free energy (∆G°), entropy (∆S°) and enthalpy (∆H°) change of the system. Adsorption Kinetic was also studied by Boyd’s model. The results demonstrated that adsorption efficiency was found to be 93% for Cadmium Oxidedye-Nano composites systems. The present model system can be employed on industrial scale as a single step process for the removal of dye pollutants and thus it could provide a new raised area for waste minimization. Original Research Article Atiya Firdous and Hameed; ACSJ, 13(1): 1-10, 2016; Article no.ACSJ.23799 2\",\"PeriodicalId\":7399,\"journal\":{\"name\":\"American Chemical Science Journal\",\"volume\":\"49 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Chemical Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/acsj/2016/23799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Chemical Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/acsj/2016/23799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目前的研究重点是采用共沉淀法的极端化法制备氧化镉。采用傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)技术对制备的纳米氧化镉复合材料的表面形貌进行了分析。采用纳米复合材料对模拟染料废水进行了吸附处理。此外,还选择孔雀石绿草酸(Malachite Green Oxalate, MGO)作为染料废水的模型复制系统,探讨其去除有毒染料的潜在实用性。在最佳吸附剂用量、染料浓度、温度等条件下进行了吸附实验。采用Freundlich、Langmuir和D-R (Dubinin-Radushkevich)吸附模型对吸附过程的可接受性进行了估计。r2的值表明Freundlich模型是最适合的模型。进行热力学研究,测定系统的自由能(∆G°)、熵(∆S°)和焓(∆H°)变化。用Boyd模型研究了吸附动力学。结果表明,氧化镉-纳米复合材料的吸附效率为93%。该模型系统可用于工业规模的染料污染物的单步去除,从而为废物最小化提供了新的提升空间。原创研究文章Atiya Firdous和Hameed;学报,13(1):1-10,2016;文章no.ACSJ。23799 2
The Synthesis and Characterization of Nano Composites of CdO and Its Applications for the Treatment of Simulated Dye Wastewater
The current study emphasizes the fabrications of Cadmium Oxide by extremity up approach adopting co-precipitation procedure. The surface morphology of fabricated Nano composites cadmium oxide was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microcopy (SEM) techniques. The treatment of simulated dyes wastewater was carried out by adsorption method using CdO Nano composites. In addition Malachite Green Oxalate (MGO) was selected as a model replicated system of dye wastewater, to explore the potential practicability for the elimination of the toxic dye. The adsorption experiments were heralded under the optimized conditions like adsorbent dosage, dye concentration and temperature. The acceptability of adsorption progression was estimated by proceeding adsorption models like Freundlich, Langmuir and D-R (Dubinin–Radushkevich). The values of R 2 show that Freundlich model is the best fitted model. The thermodynamic study was conducted to determine the values of free energy (∆G°), entropy (∆S°) and enthalpy (∆H°) change of the system. Adsorption Kinetic was also studied by Boyd’s model. The results demonstrated that adsorption efficiency was found to be 93% for Cadmium Oxidedye-Nano composites systems. The present model system can be employed on industrial scale as a single step process for the removal of dye pollutants and thus it could provide a new raised area for waste minimization. Original Research Article Atiya Firdous and Hameed; ACSJ, 13(1): 1-10, 2016; Article no.ACSJ.23799 2