高压下聚合物/气体体系相互作用的量热/PVT研究

S. Boyer
{"title":"高压下聚合物/气体体系相互作用的量热/PVT研究","authors":"S. Boyer","doi":"10.11311/JSCTA1974.33.114","DOIUrl":null,"url":null,"abstract":"Materials selection is usually made according to their thermophysical and structural properties. To provide a useful guide to the utilization of materials in a given set of conditions (temperature T, pressure P and pressurizing conditions), PVT-Controlled scanning calorimetry named scanning transitiometry permits to well document phase diagrams. The type and extent of {polymer/gas} interactions as well as thermophysical properties are obtained from thermal and mechanical measurements resulting from the methodology controlling precisely the temperature and pressure. Scanning transitiometry permits to scan one of the independent variables (P, V, or T) while the other independent variable is kept constant. Simultaneous change of the dependent variable is recorded together with the associated thermal effect. The effect of pressure on the thermophysical properties, especially using carbon dioxide as a pressurizing fluid, is investigated along two types of runs. Pressure-Controlled Scanning Calorimetry (PCSC) run is employed to determine the global cubic thermal expansion coefficients ‡ of semicrystalline polymers in interaction with a fluid. Temperature-Controlled Scanning Calorimetry (TCSC) run is employed to investigate the isotropic transitions of amphiphilic liquid crystalline di-block copolymers under a pressurizing fluid. These polymers play an essential role as regards the safety of transport of petroleum products and are promising candidates as templates for microelectronics and biotechnology.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"6 1","pages":"114-126"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Calorimetric/PVT Investigations of the Interactions in Polymer/Gas Systems under High Pressures\",\"authors\":\"S. Boyer\",\"doi\":\"10.11311/JSCTA1974.33.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Materials selection is usually made according to their thermophysical and structural properties. To provide a useful guide to the utilization of materials in a given set of conditions (temperature T, pressure P and pressurizing conditions), PVT-Controlled scanning calorimetry named scanning transitiometry permits to well document phase diagrams. The type and extent of {polymer/gas} interactions as well as thermophysical properties are obtained from thermal and mechanical measurements resulting from the methodology controlling precisely the temperature and pressure. Scanning transitiometry permits to scan one of the independent variables (P, V, or T) while the other independent variable is kept constant. Simultaneous change of the dependent variable is recorded together with the associated thermal effect. The effect of pressure on the thermophysical properties, especially using carbon dioxide as a pressurizing fluid, is investigated along two types of runs. Pressure-Controlled Scanning Calorimetry (PCSC) run is employed to determine the global cubic thermal expansion coefficients ‡ of semicrystalline polymers in interaction with a fluid. Temperature-Controlled Scanning Calorimetry (TCSC) run is employed to investigate the isotropic transitions of amphiphilic liquid crystalline di-block copolymers under a pressurizing fluid. These polymers play an essential role as regards the safety of transport of petroleum products and are promising candidates as templates for microelectronics and biotechnology.\",\"PeriodicalId\":19096,\"journal\":{\"name\":\"Netsu Sokutei\",\"volume\":\"6 1\",\"pages\":\"114-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netsu Sokutei\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11311/JSCTA1974.33.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netsu Sokutei","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11311/JSCTA1974.33.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

材料的选择通常是根据它们的热物理和结构性能。为了在给定的一组条件下(温度T,压力P和加压条件)对材料的利用提供有用的指导,pvt控制的扫描量热法被称为扫描过渡法,可以很好地记录相图。{聚合物/气体}相互作用的类型和程度以及热物理性质是通过精确控制温度和压力的方法进行的热学和力学测量获得的。扫描过渡测量法允许扫描其中一个自变量(P, V或T),而另一个自变量保持不变。同时记录了因变量的变化和相关的热效应。压力对热物理性质的影响,特别是使用二氧化碳作为加压流体,研究了两种类型的下入。压力控制扫描量热法(PCSC)运行用于确定与流体相互作用的半结晶聚合物的整体立方热膨胀系数‡。采用温控扫描量热法(TCSC)研究了两亲液晶二嵌段共聚物在加压流体作用下的各向同性转变。这些聚合物在石油产品的安全运输方面起着至关重要的作用,是微电子和生物技术的有前途的模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calorimetric/PVT Investigations of the Interactions in Polymer/Gas Systems under High Pressures
Materials selection is usually made according to their thermophysical and structural properties. To provide a useful guide to the utilization of materials in a given set of conditions (temperature T, pressure P and pressurizing conditions), PVT-Controlled scanning calorimetry named scanning transitiometry permits to well document phase diagrams. The type and extent of {polymer/gas} interactions as well as thermophysical properties are obtained from thermal and mechanical measurements resulting from the methodology controlling precisely the temperature and pressure. Scanning transitiometry permits to scan one of the independent variables (P, V, or T) while the other independent variable is kept constant. Simultaneous change of the dependent variable is recorded together with the associated thermal effect. The effect of pressure on the thermophysical properties, especially using carbon dioxide as a pressurizing fluid, is investigated along two types of runs. Pressure-Controlled Scanning Calorimetry (PCSC) run is employed to determine the global cubic thermal expansion coefficients ‡ of semicrystalline polymers in interaction with a fluid. Temperature-Controlled Scanning Calorimetry (TCSC) run is employed to investigate the isotropic transitions of amphiphilic liquid crystalline di-block copolymers under a pressurizing fluid. These polymers play an essential role as regards the safety of transport of petroleum products and are promising candidates as templates for microelectronics and biotechnology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stability of Materials in Lithium-Ion Cells Relationship between Vulcanizing Density and Thermal Diffusivity or Thermal Conductivity of Vulcanized Natural Rubber High Temperature Microbalance Technique for the Determination of the Metal Oxides Nonstoichiometry under Controlled Atmosphere Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy Phase Behavior of Thermotropic Cubic Mesogens under Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1