松材热机械致密化对铣削切削力和粗糙度的影响

Barbara Białowąs, K. Szymanowski
{"title":"松材热机械致密化对铣削切削力和粗糙度的影响","authors":"Barbara Białowąs, K. Szymanowski","doi":"10.5604/01.3001.0015.2330","DOIUrl":null,"url":null,"abstract":"Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling. The paper presents the results of research concerning the assessment of machinability of pine wood thermomechanically compacted. The assessment was made on the basis of the cutting forces and surface roughness after the milling process. Selected properties of native and modified wood were examined. Based on the research, it was found that compacted wood is characterized by higher cutting forces during milling. The surface quality after milling was examined and the roughness index Ra values were determined. The research shows that the modified wood is characterized by a lower Ra value both along and across the grain. Statistical analysis showed that the modification had a statistically significant effect on the values of cutting forces and the physical and mechanical properties of the tested wood.\n\n","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling\",\"authors\":\"Barbara Białowąs, K. Szymanowski\",\"doi\":\"10.5604/01.3001.0015.2330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling. The paper presents the results of research concerning the assessment of machinability of pine wood thermomechanically compacted. The assessment was made on the basis of the cutting forces and surface roughness after the milling process. Selected properties of native and modified wood were examined. Based on the research, it was found that compacted wood is characterized by higher cutting forces during milling. The surface quality after milling was examined and the roughness index Ra values were determined. The research shows that the modified wood is characterized by a lower Ra value both along and across the grain. Statistical analysis showed that the modification had a statistically significant effect on the values of cutting forces and the physical and mechanical properties of the tested wood.\\n\\n\",\"PeriodicalId\":8020,\"journal\":{\"name\":\"Annals of WULS, Forestry and Wood Technology\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of WULS, Forestry and Wood Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.2330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of WULS, Forestry and Wood Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.2330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

松材热机械致密化对铣削切削力和粗糙度的影响。本文介绍了热压松材可加工性评价的研究结果。根据铣削后的切削力和表面粗糙度进行评价。考察了天然木材和改性木材的选定性能。研究发现,压实木材在铣削过程中具有较高的切削力。对铣削后的表面质量进行了检测,并测定了粗糙度指数Ra值。研究表明,改性木材具有沿纹和横纹Ra值较低的特点。统计分析表明,改性对被测木材的切削力值和物理力学性能有统计学上显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling
Effect of thermomechanical densification of pine wood (Pinus sylvestris L.) on cutting forces and roughness during milling. The paper presents the results of research concerning the assessment of machinability of pine wood thermomechanically compacted. The assessment was made on the basis of the cutting forces and surface roughness after the milling process. Selected properties of native and modified wood were examined. Based on the research, it was found that compacted wood is characterized by higher cutting forces during milling. The surface quality after milling was examined and the roughness index Ra values were determined. The research shows that the modified wood is characterized by a lower Ra value both along and across the grain. Statistical analysis showed that the modification had a statistically significant effect on the values of cutting forces and the physical and mechanical properties of the tested wood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paper recycling as an element of sustainable development Analysis of the level of knowledge of the local community about Bialowieza Forest Impact of Seat and Back Angle Settings on Seating Furniture Quality: An Experimental Study Smart design upcycling of post-production display panels into new creativematerials to support the sustainable development of a circular economy inthe furniture industry Transport as a Factor in the Location Selection Process of Timber Firms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1