F. K. Mutasa, Brian Jones, I. Tendaupenyu, T. Nhiwatiwa, Mzime R. Ndebele-Murisa
{"title":"地表温度对卡里巴湖湖沼沼种群的影响","authors":"F. K. Mutasa, Brian Jones, I. Tendaupenyu, T. Nhiwatiwa, Mzime R. Ndebele-Murisa","doi":"10.1155/2023/1457714","DOIUrl":null,"url":null,"abstract":"Global warming is a serious world problem where earth’s temperature has been reported to increase over the years; the aquatic ecosystems are also not the exceptions. But, the effects of this phenomenon on the aquatic ecosystems are not well understood. This study aims to understand the influence of surface temperature on the population density of Limnothrissa miodon in Lake Kariba. We constructed a mathematical model on the population dynamics of Limnothrissa miodon with nutrients, phytoplankton, zooplankton, and Hydrocynus vittatus. Lake surface water temperature was modelled by a cosine function, and the parameters were estimated from data fitting. Numerical simulations were used to determine the stability of the nonautonomous model. Numerical simulation results of the nonautonomous model showed a stable periodic orbit for varying initial conditions, and therefore, instability. Numerical techniques were used to investigate the influence of surface water temperature on Limnothrissa miodon. Results from the model with fitted lake surface water temperature data showed that a shift in the optimal temperature for phytoplankton growth from \n \n \n \n 25\n \n \n °\n \n \n \n C to \n \n \n \n 34\n \n \n °\n \n \n \n C, corresponding to dominance of Cyanophyceae over Chlorophyceae, resulted in a decline in the population density of Limnothrissa miodon. Numerical results showed that the population density of Limnothrissa miodon declines after an optimum temperature of \n \n \n \n 30\n \n \n °\n \n \n \n C for phytoplankton growth. Numerical simulation results suggested that warming of the lake may lead to a decline in Limnothrissa miodon population density in Lake Kariba.","PeriodicalId":43584,"journal":{"name":"International Journal of Ecology & Development","volume":"78 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Temperature Influences the Population of Limnothrissa miodon in Lake Kariba\",\"authors\":\"F. K. Mutasa, Brian Jones, I. Tendaupenyu, T. Nhiwatiwa, Mzime R. Ndebele-Murisa\",\"doi\":\"10.1155/2023/1457714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global warming is a serious world problem where earth’s temperature has been reported to increase over the years; the aquatic ecosystems are also not the exceptions. But, the effects of this phenomenon on the aquatic ecosystems are not well understood. This study aims to understand the influence of surface temperature on the population density of Limnothrissa miodon in Lake Kariba. We constructed a mathematical model on the population dynamics of Limnothrissa miodon with nutrients, phytoplankton, zooplankton, and Hydrocynus vittatus. Lake surface water temperature was modelled by a cosine function, and the parameters were estimated from data fitting. Numerical simulations were used to determine the stability of the nonautonomous model. Numerical simulation results of the nonautonomous model showed a stable periodic orbit for varying initial conditions, and therefore, instability. Numerical techniques were used to investigate the influence of surface water temperature on Limnothrissa miodon. Results from the model with fitted lake surface water temperature data showed that a shift in the optimal temperature for phytoplankton growth from \\n \\n \\n \\n 25\\n \\n \\n °\\n \\n \\n \\n C to \\n \\n \\n \\n 34\\n \\n \\n °\\n \\n \\n \\n C, corresponding to dominance of Cyanophyceae over Chlorophyceae, resulted in a decline in the population density of Limnothrissa miodon. Numerical results showed that the population density of Limnothrissa miodon declines after an optimum temperature of \\n \\n \\n \\n 30\\n \\n \\n °\\n \\n \\n \\n C for phytoplankton growth. Numerical simulation results suggested that warming of the lake may lead to a decline in Limnothrissa miodon population density in Lake Kariba.\",\"PeriodicalId\":43584,\"journal\":{\"name\":\"International Journal of Ecology & Development\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ecology & Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1457714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ecology & Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1457714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Surface Temperature Influences the Population of Limnothrissa miodon in Lake Kariba
Global warming is a serious world problem where earth’s temperature has been reported to increase over the years; the aquatic ecosystems are also not the exceptions. But, the effects of this phenomenon on the aquatic ecosystems are not well understood. This study aims to understand the influence of surface temperature on the population density of Limnothrissa miodon in Lake Kariba. We constructed a mathematical model on the population dynamics of Limnothrissa miodon with nutrients, phytoplankton, zooplankton, and Hydrocynus vittatus. Lake surface water temperature was modelled by a cosine function, and the parameters were estimated from data fitting. Numerical simulations were used to determine the stability of the nonautonomous model. Numerical simulation results of the nonautonomous model showed a stable periodic orbit for varying initial conditions, and therefore, instability. Numerical techniques were used to investigate the influence of surface water temperature on Limnothrissa miodon. Results from the model with fitted lake surface water temperature data showed that a shift in the optimal temperature for phytoplankton growth from
25
°
C to
34
°
C, corresponding to dominance of Cyanophyceae over Chlorophyceae, resulted in a decline in the population density of Limnothrissa miodon. Numerical results showed that the population density of Limnothrissa miodon declines after an optimum temperature of
30
°
C for phytoplankton growth. Numerical simulation results suggested that warming of the lake may lead to a decline in Limnothrissa miodon population density in Lake Kariba.
期刊介绍:
The main aim of the International Journal of Ecology & Development (IJED) is to publish refereed, well-written original research articles, and studies that describe the latest research and developments in ecology and development. It also covers the many potential applications and connections to other areas of Ecological Science, economics and technology such as the use and development of mathematics/statistics in ecology or use and development of economics for ecology & development or inter-disciplinary nature of applications for Ecology & Development. International Journal of Ecology and Development is published three issues in a year in Winter, Summer and Fall.